Scene Scheduler - User Manual

Version: 0.4 Date: October 28, 2025 Application: Scene Scheduler for OBS Studio

Table of Contents

1. Getting Started
2. Understanding Scene Scheduler
3. Web Interface Overview
4. Schedule Management
5. Configuring Events
6. System Configuration
7. How It Works Internally
8. Use Cases and Examples
9. Best Practices

10. Troubleshooting

11. Technical Reference

12. Quick Reference Card

1. Getting Started
1.1 What is Scene Scheduler?

Scene Scheduler is an external automation tool for OBS Studio that automates
your broadcast schedule like a television station. It manages programmed content
playback based on precise time schedules, enabling fully automated 24/7 streaming
without manual intervention.

Core Purpose: Scene Scheduler is designed to automate broadcast schedules -
allowing you to plan ahead what content will air and when, then letting the system
execute those transitions automatically. Think of it as creating a TV channel
programming guide that OBS follows automatically.

How it works: - You create a schedule (programming grid) defining what content
plays at specific times - Scene Scheduler monitors the clock and automatically
triggers scene/source changes when each event's time arrives - The system runs
continuously, executing your programmed schedule 24/7 without human
intervention - A web-based Monitor View lets you observe the schedule and current

status from anywhere - An optional Editor View provides a visual calendar interface
to modify the schedule

Why use Scene Scheduler? - 24/7 automation: Perfect for streaming channels,
digital signage, worship services, conferences, or any scheduled broadcast - Zero
manual intervention: Once programmed, the schedule executes automatically -
Network accessible: Monitor and edit from any device on your network (laptop,
tablet, phone) - Reduced server load: Web interface runs on client devices, not the
OBS machine - Safe external architecture: Runs outside OBS, so crashes don't
affect your broadcast

1.2 Prerequisites

Before installing Scene Scheduler, ensure you have:

1. OBS Studio (version 28.0 or higher recommended) - Download from: https://
obsproject.com/

2. OBS WebSocket Plugin (version 5.x) - OBS Studio 28+ includes this by default
- For older versions, install from: https://github.com/obsproject/obs-
websocket

3. Operating System: - Linux: Tested on Ubuntu 20.04+, other distributions
should work - Windows: Windows 10/11 (64-bit)

4. Network: OBS and Scene Scheduler must be on the same machine or
accessible via network

1.3 Quick Start Installation
Linux Installation

Step 1: Download Scene Scheduler

bash

Extract the downloaded archive

tar -xzf scenescheduler-linux-amd64.tar.gz
cd scenescheduler

Windows Installation

Step 1: Download Scene Scheduler 1. Extract the downloaded scenescheduler-
windows-amd64.zip file 2. Extract the ZIP file to a folder (e.g., C:\scenescheduler\) 3.
Open Command Prompt or PowerShell in that folder

Step 2: Configure OBS WebSocket

1. Open OBS Studio

2. Go to Tools —» WebSocket Server Settings

3. Enable "Enable WebSocket server"

4. Set a password (recommended) or leave blank for local-only access
5. Note the port (default: 4455)

6. Click OK

Step 3: Configure Scene Scheduler

Edit config.json:

json
{
"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": "your-obs-password"
},
"webServer": {
"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"
},
"schedule": {
"jsonPath": "schedule.json",
"scheduleSceneAux": "scheduleSceneAux"
},
"paths": {
"hlsGenerator": "./hls-generator"
}
}

Critical configuration notes: - obsWebSocket.password: Must match your OBS
WebSocket password - webServer.hlsPath: Directory for HLS preview files (relative
to executable) - schedule.scheduleSceneAux: Name of the auxiliary OBS scene
(created automatically if it doesn't exist)

Step 4: Auxiliary Scene

Scene Scheduler automatically creates an auxiliary scene in OBS when it starts. This
scene is used as a "staging area" to prepare sources before transitioning to them,

ensuring smooth transitions without visible loading delays.

Scene name configuration: - The auxiliary scene name is configured in
config.json under schedule.scheduleSceneAux - Default name: scheduleSceneAux - If
the scene doesn't exist, Scene Scheduler creates it automatically - The scene is

managed entirely by Scene Scheduler (don't add sources manually)

Step 5: Start Scene Scheduler

Linux:

bash
Make executable

chmod +x scenescheduler

Run
./scenescheduler

Windows:

cmd

REM Run in Command Prompt

scenescheduler.exe

REM Or double-click

scenescheduler.exe in File Explorer

You should see output like:

2025/10/28 10:30:15
2025/10/28 10:30:15
2025/10/28 10:30:15
2025/10/28 10:30:15
2025/10/28 10:30:15

INFO Scene Scheduler starting version=1.6

INFO WebSocket connecting host=localhost port=4455
INFO Connected to OBS Studio version=30.0.0

INFO Web server listening address=http://0.0.0.0:8080
INFO Schedule loaded events=0

Step 6: Access Web Interface

Open your browser and navigate to Scene Scheduler. You can access it from:

e Same machine: http://localhost:8080

¢ Other devices on network: http://<server-ip>:8080

e Example: http://192.168.1.100:8080
 Replace <server-ip> with the actual IP address of the machine running Scene
Scheduler

Finding your server IP address:

Linux:

bash
ip addr show | grep inet

Windows:

cmd
ipconfig

Look for the IPv4 address on your active network interface (usually starts with
192.168.x.x or 10.x.X.X).

Why remote access? The key benefit of Scene Scheduler is that you can control and
monitor OBS from any device on your network (laptop, tablet, phone), reducing
load on the machine running OBS and allowing multiple people to monitor the
schedule simultaneously.

You should see the Scene Scheduler web interface with two main views: - Monitor
View: Displays current and upcoming events (read-only) - Editor View: Visual
editor for schedule.json

1.4 Your First Schedule Event

Let's create a simple event that switches to a scene at a specific time:
1. Open Editor View (click "Editor" button in top navigation)
2. Add a new event (click "+ Add Event" button)

3. Configure the event in the modal dialog: - Time: Set to a few minutes from
now (e.g., if it's 10:30, set 10:35) - OBS Scene: Select an existing scene from
your OBS (e.g., "Scene 1") -Duration: Leave at default (00:05:00 = 5 minutes) -
Sources Tab: Leave empty for now (just scene switching)

4. Save the event (click "Save Event")

5. Observe: - The event appears in your schedule list - When the scheduled time
arrives, OBS automatically switches to the selected scene - Monitor view shows
"CURRENT EVENT" highlighting

Congratulations! You've created your first automated scene transition.

1.5 Understanding the Monitor View

The Monitor View is designed for passive observation. It's perfect for: - Displaying
on a secondary monitor in a control room - Sharing with team members who need
visibility but not edit access - Checking current status without risk of accidental
changes

What you see: - Current time (updates every second) - Active event (highlighted
with countdown timer) - Next events (upcoming schedule preview) - Color coding:
- Green: Current active event - Yellow: Next event (starts soon) - © White: Future
events

1.6 Understanding the Editor View

The Editor View provides full schedule control. Use it to: - Add, edit, and delete
events - Reorder schedule entries - Configure complex source setups - Preview
sources before committing

Key interface elements: - + Add Event: Creates new schedule entry - Event list:
Shows all scheduled events with controls - Edit button (pencil icon): Opens event
configuration modal - Delete button (trash icon): Removes event - Drag handle:
Reorder events by dragging

2. Understanding Scene Scheduler
2.1 Core Concepts

Before diving into advanced features, let's understand how Scene Scheduler thinks
about time-based automation:

Events (Scheduled Programs)
An event is a time-scheduled instruction that tells OBS to: 1. At a specific time

(e.g., 14:30:00): Switch to a specific OBS scene 2. Optionally: Add/configure scene-
specific sources (media files, streams, browser sources) 3. For a duration (e.g., 30

minutes): Keep that configuration active 4. Then cleanup: Remove added sources
when the event ends

Think of events as the individual "shows" or "segments" in your broadcast schedule.
Events are the fundamental building blocks of your programming grid.

Scenes

A scene in OBS is a collection of sources (video, audio, images, etc.) arranged in a
specific layout. Scene Scheduler doesn't create scenes—it uses your existing OBS
scenes and enhances them by: - Dynamically adding/removing sources based on the
schedule - Preparing sources in the background before they're visible - Cleaning up
after an event ends

Sources

A source is any content element in OBS: - Media files (videos, audio) - Browser
sources (web pages, HTML overlays) - Streaming inputs (RTMP, RTSP, RTP, SRT) -
Images - VLC playlists

Scene Scheduler can configure these sources automatically per event.
The Auxiliary Scene (scheduleSceneAux)

This is Scene Scheduler's "backstage area"—a hidden scene where: - Sources are
loaded and prepared before they're needed - Streaming inputs are tested for
connectivity - Media files are preloaded to avoid visible delays

You never see this scene during broadcast, but it's critical for smooth operation.
2.2 Architecture Overview

Scene Scheduler uses a distributed client-server architecture that allows remote
access and operation:

Production Server |

|
|

|

	WebSocket)			
	OBS Studio	<	Scene	
]	(localhost)	Scheduler		
	- Scenes			
	- Sources		(Backend)	

| - Rendering | s
| | | |

HTTP Server (0.0.0.0:8080) |

|
l
|
Network (LAN/Internet) |
|
|

——Y— ——Y— —Y—
Laptop		Tablet		Phone
Browser		Browser		Browser
Monitor		Editor		Monitor
View		view		View
I — | 1 —

Communication flow: 1. Backend « OBS: WebSocket connection for scene/source
control (localhost) 2. Backend = Internet: HTTP server binds to 0.0.0.0 (accessible
from network) 3. Remote Clients = Backend: HTTP/WebSocket from any device on
network 4. Backend — All Clients: Real-time broadcasts of schedule updates

Key architectural benefits: - Distributed access: Control from anywhere on the
network (or internet if exposed) - Reduced server load: Web UI runs on client
devices, not the OBS machine - Multi-user monitoring: Multiple people can view
Monitor View simultaneously - Flexible deployment: Server doesn't need display,
keyboard, or GUI - Scalability: Add as many monitoring clients as needed without
affecting performance

2.3 How Scene Transitions Work

Scene Scheduler uses a sophisticated staging system to ensure smooth transitions
without visual artifacts. The system operates when a scheduled event's time arrives.

The Staging Process (5 Steps):

Step 1: STAGING (Preparation in Background)

| - New source created in scheduleSceneAux (auxiliary/temporary scene)
| - Source fully configured but remains invisible to viewers

| - ALl transformations applied (position, scale, crop, etc.)

| - Media files and streams begin loading

| - If this step fails: Process stops, current broadcast unaffected

|
S

tep 2: ACTIVATION (Move to Visible Scene)

- Source moved from scheduleSceneAux to target OBS scene
- Source made visible to audience

- Transition happens instantly (source already prepared)
- If this step fails: Fallback to previous content

tep 3: SCENE SWITCH (OBS Scene Change)
- OBS transitions to the target scene
- Audience sees new content immediately
- No buffering or loading delays (thanks to staging)
- If this step fails: Rollback, previous content maintained

- Temporary element removed from scheduleSceneAux
- Resources freed for next event
- Auxiliary scene ready for next staging operation

tep 5: MONITOR (Ongoing Management)
- Scene remains active for programmed duration
- When event ends: Source automatically removed
- System ready for next scheduled event

|

|

|

|

|

S

|

|

|

|

|

Step 4: CLEANUP (Remove Temporary Elements)
|

|

|

|

S

|

|

Key Benefits: - No visible loading: Sources prepared before they're shown - Atomic
transitions: Either complete success or safe rollback - Resource efficiency:
Cleanup prevents memory leaks - Continuous operation: System handles 24/7
automated scheduling

2.4 Schedule Execution Model

Scene Scheduler uses a time-based trigger system:

1. Schedule Loading: On startup, schedule. json is loaded and parsed

2. Event Queue: Events are sorted by time and monitored continuously

3. Trigger Detection: Every second, the scheduler checks if any event's time has
arrived

4. Execution: When event time arrives, the 5-step staging process begins (see
Section 2.3)

5. Cleanup: After event duration expires, resources are cleaned up

Important: Events are time-triggered, not sequential. If an event's time is missed
(e.g., Scene Scheduler was stopped), it won't execute when restarted—only
upcoming events run.

2.5 Real-Time Synchronization

All connected clients (Monitor and Editor views) receive instant updates via
WebSocket:

e Schedule changes: Adding/editing/deleting events updates all clients
immediately

e Current event tracking: All views highlight the active event

» OBS state changes: If you manually change scenes in OBS, clients are notified

» Connection status: Visual indicators show OBS connection state

This enables collaborative operation: multiple team members can monitor the
same schedule from different devices.

3. Web Interface Overview
3.1 Interface Modes

Scene Scheduler provides two distinct web interfaces optimized for different use
cases:

Monitor View (/)

Purpose: Passive observation and status monitoring

Use cases: - Wall-mounted displays in broadcast control rooms - Secondary
monitors for operators - Public-facing status boards - Mobile devices for quick status
checks

Features: - Large, readable typography - Current event prominently displayed -
Countdown timer to next event - No edit controls (prevents accidental changes) -
Auto-updating every second

Access URLs: - Same machine: http://localhost:8080/ - Network access: http://

<server-ip>:8080/
Editor View (/editor.html)

Purpose: Visual editor for schedule. json

What it does: - Edit the schedule.json file through a web interface - Add, modify, or
delete events - Configure event sources (media, browser, streams) - Save changes
back to schedule.json

Features: - Event list with add/edit/delete buttons - Modal dialog for event
configuration - Optional source preview (testing tool) - Visual time/duration pickers

Access URLs: - Same machine: http://localhost:8080/editor.html - Network
access: http://<server-ip>:8080/editor.html

3.2 Navigation

Both views include a top navigation bar with:

| Scene Scheduler [Monitor] [Editor] e Connected |
| |

» Scene Scheduler: Application title/logo

 [Monitor]: Button to switch to Monitor view

» [Editor]: Button to switch to Editor view

e Connection indicator:

e Green dot: Connected to OBS and backend

e Red dot: Disconnected (check OBS and backend status)

3.3 Monitor View Layout

CURRENT TIME: 14:35:22

CURRENT EVENT |]

14:30:00 - Scene: Afternoon Show | |
Duration: 1h 00m
Ends in: 24m 38s

Sources:
s Media: /videos/intro.mp4 |]
* Browser: https://overlay.example.com | |

UPCOMING EVENTS |

| 15:30:00 - Scene: News Segment |
| Starts in: 54m 38s |

|

| 16:00:00 - Scene: Weather Report
| Starts in: 1h 24m 38s
|

Color coding: - Green background: Currently active event - Yellow background:
Next event (starts within 30 minutes) - White background: Future events

Time displays: - Absolute time: Event start time (HH:MM:SS format) - Relative
time: Countdown or time remaining - Duration: How long the event runs

3.4 Editor View Layout

|
[+ Add Event] Current: 14:35 |
|
|
|
14:30:00 - Afternoon Show [Edit] [Delete]| |
Duration: 1h 06m | Ends: 15:30:00 | |

Sources: 2 configured | |

|
15:30:00 - News Segment [Edit] [Delete] | |
Duration: 36m | Ends: 16:00:00 | |
Sources: 1 configured | |

|
16:00:00 - Weather Report [Edit] [Delete] | |
Duration: 15m | Ends: 16:15:00 | |
Sources: 0 configured | |

Interface elements: - + Add Event button: Creates new schedule entry (opens
modal) - Event cards: Each event shown as a card with summary info - Edit button
(pencil icon): Opens configuration modal for that event - Delete button (trash icon):

Removes event (with confirmation) - Drag handle (: : icon): Reorder events by
dragging

Event card information: - Time and scene name: Primary identification -
Duration and end time: Calculated automatically - Source count: Number of
configured sources - Current event indicator: Green background for active event

3.5 Event Configuration Modal

When you click "Add Event" or "Edit" on an existing event, a modal dialog opens with
five tabs:

Configure Event [x]

[General] [Media] [Browser] [FFMPEG] [Preview] |

(Tab content appears here)

[Cancel] [Save Event] |

Five tabs: 1. General: Time, scene selection, duration 2. Media: Video/audio file
sources 3. Browser: Web page and HTML overlay sources 4. FFMPEG: Network
streaming inputs (RTMP, RTSP, RTP, SRT, NDI) 5.Preview: Real-time source preview
(test before saving)

We'll explore each tab in detail in Section 5.

4. Schedule Management
4.1 Understanding Your Schedule

Your schedule is stored in schedule. json as a time-ordered list of events. Each event
defines: - When: The exact time to execute (HH:MM:SS format) - What: Which OBS
scene to activate - How long: Duration the scene remains active - Content:
Optional sources to add to the scene

Key principles: 1. Events are time-triggered: They execute at their scheduled time
regardless of previous events 2. Events can overlap: Multiple events can be

configured for the same time (though this may cause conflicts) 3. Events don't
loop: Each event runs once per day unless explicitly repeated 4. Changes are
immediate: Editing the schedule updates OBS in real-time

4.2 Creating Your First Event
Let's walk through creating a complete event step by step:

Step 1: Open Editor View - Navigate to Editor View: - Same machine: http://
localhost:8080/editor.html - Network access: http://<server-ip>:8080/
editor.html - Click the "+ Add Event" button in the top bar - The event
configuration modal opens

Step 2: Configure General Settings (General Tab)
The General tab contains the essential event parameters:

1. Time (required) - Format: HH:MM:SS (24-hour clock) - Example: 14:30:00 for
2:30 PM - Must be a valid time (00:00:00 to 23:59:59) - Tip: Set times a few
minutes in the future for testing

2. OBS Scene (required) - Dropdown shows all scenes currently configured in
OBS - Select the scene you want to activate - Important: The scene must exist
in OBS before scheduling - If the dropdown is empty, check your OBS
connection

3. Duration (required) - Format: HH:MM:SS (hours:minutes:seconds) - Default:
00:05:00 (5 minutes) - Examples:

© 00:30:00 = 30 minutes

© 01:00:00 = 1 hour

° 00:00:30 = 30 seconds

o Tip: Duration determines when sources are cleaned up

4. Event Name (optional) - A descriptive label for your event - Shown in monitor

and editor views - Example: "Morning News", "Afternoon Show", "Commercial
Break" - If empty, the scene name is used

Example configuration:

Time: 14:30:00
Scene: Afternoon Show

Duration: 01:00:00
Name: Daily Afternoon Broadcast

Step 3: Add Sources (Optional)

If your event needs specific content (videos, overlays, streams), configure them in
the source tabs: - Media Tab: Add video or audio files - Browser Tab: Add web
pages or HTML overlays - FFMPEG Tab: Add network streaming inputs

We'll cover source configuration in detail in Section 5.
Step 4: Preview Sources (Optional)

Before saving, you can test your sources using the Preview Tab: - Generates a real-
time HLS stream of each source - Plays in the browser for verification -
Automatically stops after 30 seconds - See Section 5.6 for comprehensive preview
documentation

Step 5: Save the Event

Click "Save Event" at the bottom of the modal. The system: 1. Validates all fields 2.
Adds the event to schedule. json 3. Broadcasts the update to all connected clients 4.
Closes the modal 5. Shows the new event in the editor list

Step 6: Verify

After saving: - The event appears in the Editor View event list - Monitor View shows
it in upcoming events - OBS will automatically switch to the scene at the scheduled
time

4.3 Editing Existing Events

To modify an event:

1. Locate the event in Editor View

2. Click the Edit button (pencil icon) on the event card
3. Make changes in any of the five tabs

4. Save to apply changes immediately

Important notes: - Changes to past events have no effect (events are time-
triggered) - Editing an active event updates OBS immediately - Source changes take
effect on the next event trigger

Common edits: - Adjust timing: Change the time field to reschedule - Change
duration: Extend or shorten the event - Swap scenes: Select a different OBS scene -
Update sources: Add, remove, or modify source configurations -Fix errors: Correct
invalid file paths or URLs

4.4 Deleting Events

To remove an event:

1. Click the Delete button (trash icon) on the event card
2. Confirm deletion in the dialog (if enabled)
3. The event is immediately removed from the schedule

What happens: - Event disappears from all views (Monitor and Editor) -
schedule. json is updated - If the event is currently active: - Sources are cleaned up
immediately - OBS remains on the current scene (no automatic switch) - Next
scheduled event will trigger normally

Tip: To temporarily disable an event without deleting it, you can: - Change its time
to far in the future (e.g., 23:59:59) - Or delete and re-add later using your browser's
undo function

4.5 Reordering Events
Events in Editor View can be reordered for visual organization:

1. Hover over the drag handle (: : icon) on an event card
2. Click and drag the event to a new position
3. Release to drop it in place

Important: Reordering in the Ul is purely visual—events still execute based on their
time field, not their position in the list. Reordering is useful for: - Grouping related
events together - Separating different "shows" or time blocks - Matching a physical
run-down sheet

4.6 Schedule Validation
Scene Scheduler performs validation when you save events:

Field validation: - Time format: Must be HH:MM:SS (e.g., 14:30:00) - Scene
exists: Selected scene must be present in OBS - Duration format: Must be
HH:MM:SS and greater than zero - Source paths: File paths must exist (checked at
staging time) - URLSs: Browser and FFMPEG URLs must be valid format

Common validation errors:

Error Message Cause Solution

"Invalid time format" Time not in HH:MM:SS Use 24-hour format: 14:30:00
"Scene not found" Scene deleted from OBS Create scene in OBS first
"Invalid duration" Duration is zero or negative Set positive duration

"Invalid URL' Malformed URL in browser/FFMPEG Check URL syntax

"File not found" Media path doesn't exist Verify file path on disk

When validation occurs: - Client-side: Form fields are validated as you type -
Server-side: Full validation when saving event - Event trigger time: File existence
and connectivity checked when event executes

4.7 Schedule Persistence
Your schedule is stored in schedule. json in the application directory:

Auto-save behavior: - Every change (add/edit/delete) immediately writes to disk -
No manual "save" required - Changes persist across application restarts

Backup recommendations: 1. Manual backups: Copy schedule.json periodically
2. Version control: Store in git for change tracking 3. Automated backups: Use
system backup tools to include the application directory

Restoring from backup:

bash
Stop Scene Scheduler
pkill scenescheduler

Restore backup
cp schedule.json.backup schedule.json

Restart Scene Scheduler
./scenescheduler

4.8 Multi-Day Schedules

Scene Scheduler operates on a 24-hour clock (00:00:00 to 23:59:59). For multi-day
operations:

Approach 1: Daily repetition (manual) - Configure events for a single day - Copy
and adjust times for subsequent days - Use descriptive names to track days (e.g.,
"Monday Morning Show")

Approach 2: 24/7 continuous schedule - Create events that span the entire day -
Use long durations for overnight periods - Example: An event at 23:00:00 with 8-
hour duration covers overnight

Approach 3: Weekly patterns - Create a template for each day of the week -
Manually switch schedules daily (replace schedule.json) - Consider scripting for
automation

Note: Scene Scheduler v1.6 does not support automatic daily repetition or day-of-
week conditions. Each event runs once per day at its scheduled time.

4.9 Handling Schedule Conflicts

What is a schedule conflict? Two or more events scheduled for the exact same
time.

How Scene Scheduler handles conflicts: - Events are processed in the order they
appear in schedule. json - Later events override earlier events - Only the last event's
sources are visible

Example conflict:

json
[
{
"time": "14:00:00",
"scene": "Scene A",
"duration": "01:00:00"
b
{
"time": "14:00:00",
"scene": "Scene B",
"duration": "00:30:00"
}

Result: At 14:00:00, both events trigger, but Scene B is activated (it's last). Scene A's
sources may be staged but never shown.

Best practices to avoid conflicts: 1. Stagger times: Use minute or second offsets
(14:00:00, 14:01:00) 2. Review schedule visually: Editor View shows all events
chronologically 3. Use unique times: Avoid duplicating times unless intentional 4.
Plan transitions: Allow buffer time between events (e.g., 30 seconds)

4.10 Testing Your Schedule
Before relying on your schedule for production:
Test Checklist:

1. Create test events - Set times 2-3 minutes in the future - Use short
durations (1-2 minutes) - Test with simple scenes first (no sources)

2. Verify scene transitions - Watch OBS at the scheduled time - Confirm scene
switches automatically - Check Monitor View highlights the correct event

3. Test source loading - Add a media source to an event - Verify it appears in
OBS at the scheduled time - Confirm playback starts automatically

4. Test event editing - Edit an upcoming event - Change the time slightly -
Verify OBS responds to the new time

5. Test cleanup - Wait for event duration to expire - Confirm sources are
removed from OBS - Check scheduleSceneAux is cleared

6. Test multiple events - Schedule 3-4 events in sequence - Verify each
transitions smoothly - Watch for any overlap issues

Troubleshooting test failures: - See Section 10 (Troubleshooting) for detailed
diagnostic steps

5. Configuring Events

This section covers the five configuration tabs in the event modal dialog. Each tab
manages a different aspect of your event's sources and behavior.

5.1 General Tab

The General tab contains the core event parameters:

Time Field

Format: HH:MM:SS (24-hour clock)

Examples: - 00:00:00 - Midnight - 09:30:00 - 9:30 AM -14:45:30 - 2:45 PM and 30
seconds - 23:59:59 - One second before midnight

Validation: - Hours: 00-23 - Minutes: 00-59 - Seconds: 00-59 - Leading zeros
required (use 09:00:00, not 9:0:0)

Tips: - For testing, set times 2-5 minutes in the future - Use seconds for precise
timing (e.g., commercial break syncing) - Remember: events trigger once per day at
this time

OBS Scene Field

Purpose: Select which scene OBS switches to when this event triggers.

How it works: 1. Dropdown is populated from OBS Studio's current scene list 2. List
updates automatically when you add/remove scenes in OBS 3. Selected scene must
exist when event triggers (or event fails)

Troubleshooting: - Empty dropdown: OBS WebSocket connection lost (check
connection indicator) - Scene missing: Scene was deleted in OBS (recreate or select
different scene) - Scene grayed out: scheduleSceneAux cannot be selected (reserved
for staging)

Duration Field

Format: HH:MM:SS (hours:minutes:seconds)

What it controls: - How long sources remain active - When cleanup occurs -
Implicit "end time" of the event (start time + duration)

Examples: - 00:00:30 - 30-second short event (bumpers, stingers) - 00:05:00 - 5-
minute event (news segments, commercials) - 00:30:00 - 30-minute event (shows,
programs) - 01:00:00 - 1-hour event (long-form content) -02:30:00 - 2.5-hour event
(movies, extended programming)

Important notes: - Duration determines when sources are cleaned up, not when
the scene changes - OBS stays on the scene until the next event triggers - Minimum
duration: 1 second (00:00:01) - Maximum duration: 23:59:59 (just under 24 hours)

Event Name Field (Optional)

Purpose: A human-readable label for the event.

Usage: - Shown in Monitor View and Editor View - Helps identify events in lists -
Does not affect OBS (purely for organization)

Best practices: - Use descriptive names: "Morning News", "Afternoon Show",
"Commercial Block 1" - Include day if scheduling multi-day: "Monday Morning
Show" - Keep concise (displays better in UI)

Default behavior: If left empty, the scene name is used as the event name.
5.2 Media Tab

The Media tab configures media_source and vlc_source types—video and audio files
that play during the event.

When to Use Media Sources

e Playing pre-recorded video files

e Background music or audio tracks

* Video loops (with loop option enabled)
e Intro/outro videos for shows

Adding a Media Source

Step 1: Source Type Select the source type: - media_source: OBS native media
source (recommended) - Supports: MP4, MOV, AVI, MKV, FLV - Hardware decoding
support - Better performance for most files

e vlc_source: VLC-based media source
e Supports: All VLC-compatible formats
e Playlist support (multiple files)

* Better codec compatibility

Step 2: Source Name Enter a unique name for this source in OBS.

Rules: - Must be unique within the event - Only alphanumeric, spaces, hyphens,
underscores - Example: IntroVideo, Background Music,Main Content

Tip: Use descriptive names that indicate the content (e.g., MondayIntro,

CommercialBlockl)

Step 3: File Path Enter the absolute path to the media file on disk.

Format: - Linux: /home/user/videos/intro.mp4 - Windows: C:\Videos\intro.mp4 or
C:/Videos/intro.mp4 (both work) - Must be readable by the Scene Scheduler process
- File must exist when event triggers (checked during staging)

Tips: - Use the file browser if available in your Ul - Avoid spaces in file paths (use
underscores: my video.mp4) - Test preview before saving event

Step 4: Additional Settings

Loop (checkbox): - Enabled: Video repeats continuously during event duration -
Disabled: Video plays once and stops

Use case for looping: - Background videos (e.g., animated backgrounds) - Short
videos that need to fill long durations - Music tracks that repeat

Use case for non-looping: - One-time intro videos - News segments - Event-
specific content that shouldn't repeat

Restart on activate (checkbox): - Enabled: Video restarts from beginning when
scene activates - Disabled: Video continues from where it was

Hardware decoding (checkbox, media_source only): - Enabled: Uses GPU for video
decoding (better performance) - Disabled: Uses CPU decoding

Recommended: Enable for high-resolution videos (1080p, 4K)

Step 5: Preview Before saving, click the Preview tab to test the media file (see
Section 5.6).

Multiple Media Sources

You can add multiple media sources to a single event:

Example use case:

Event: Morning Show

— BackgroundVideo (media source, /videos/bg.mp4, loop=true)
F— IntroMusic (media source, /audio/intro.mp3, loop=false)
L— Overlay (browser source, https://overlay.com)

All sources are added to the scene simultaneously when the event triggers.

Media Source Limitations

» File size: Large files (>2GB) may have slow load times
e Codec support: Depends on OBS and system codecs (H.264 recommended)
e Network paths: SMB/NFS mounts may cause delays (use local copies)

5.3 Browser Tab

The Browser tab configures browser_source types—web pages, HTML overlays, and
interactive web content rendered in OBS.

When to Use Browser Sources

» Dynamic overlays (chat, alerts, timers)

» Web-based graphics (HTML/CSS/JavaScript)
e Streaming dashboards

* Interactive visualizations

e Remote content (APIs, data feeds)

Adding a Browser Source

Step 1: Source Name Enter a unique name for the browser source.
Rules: Same as media sources (alphanumeric, unique within event)
Step 2: URL Enter the full URL to render.

Supported protocols: - https:// - Secure web pages (recommended) - http:// -
Non-secure web pages - file:/// - Local HTML files

Examples: - https://example.com/overlay.html - Remote hosted overlay - Linux:
file:///home/user/overlays/timer.html - Windows: file:///C:/overlays/
timer.html - http://localhost:3000 - Local development server

Important: - URL must be accessible from the machine running OBS - HTTPS is
recommended for security - Test URL in browser before adding to event

Step 3: Dimensions

Width and Height (pixels): - Defines the browser viewport size - Common sizes: -
1920 x 1080 - Full HD overlay -1280 x 720 - HD overlay -400 x 300 - Small widget -
800 x 100 - Ticker/banner

Why dimensions matter: - Affects how the page is rendered - Responsive designs
adapt to these dimensions - Larger sizes consume more resources

Step 4: CSS (Optional) Custom CSS to inject into the page.

Use cases: - Hide specific elements: #ads { display: none; } - Override colors: body
{ background: transparent; } - Adjust positioning: .widget { margin-top: 50px; }

Example CSS:

css
body {
background-color: transparent;
margin: 0;
padding: 0;
}
#header {
display: none;

}

Step 5: Additional Settings

Shutdown when not visible (checkbox): - Enabled: Browser stops rendering when
source is hidden (saves CPU/GPU) - Disabled: Browser continues rendering (use for
animations that need to run continuously)

Refresh when scene becomes active (checkbox): - Enabled: Page reloads every
time scene activates (resets state) - Disabled: Page persists across scene changes
(maintains state)

FPS (frames per second): - Default: 30 - Range: 1-60 - Higher FPS = smoother
animations, more CPU usage - Recommended: 30 for most overlays, 60 for smooth
animations

Step 6: Preview Use the Preview tab to test the browser source before saving (see
Section 5.6).

Browser Source Performance Tips

» Optimize web pages: Minimize JavaScript, compress assets

 Use transparent backgrounds: Set background: transparent in CSS
e Limit animations: Excessive animations can cause frame drops

e Shutdown when not visible: Enable to save resources

Browser Source Security

e HTTPS only: Avoid HTTP for sensitive data

e Trust the source: Only use URLs you control or trust

e Local files: Use file:/// for controlled HTML overlays

e No user input: Browser sources in OBS don't handle user input

5.4 FFMPEG Tab

The FFMPEG tab configures ffmpeg source types—network streaming inputs from
RTMP, RTSP, RTP, SRT, HLS, and other protocols.

When to Use FFMPEG Sources

e [P cameras (RTSP streams)

e Remote contribution feeds (SRT, RTMP)

e Network video sources (NDI via FFMPEG)
e Live streaming inputs (HLS, RTMP pull)

« Professional broadcast equipment outputs

Adding an FFMPEG Source

Step 1: Source Name Enter a unique name for the FFMPEG source.
Examples: Cameral, RemoteFeed, IP_Camera Front, SRT Input

Step 2: Input URL Enter the streaming URL.

Supported protocols:

RTSP (IP Cameras):

rtsp://192.168.1.100:554/stream
rtsp://username:password@camera.local/live

RTMP (Streaming servers):

rtmp://server.example.com:1935/1ive/stream
rtmp://192.168.1.50/1ive/feed

SRT (Secure Reliable Transport):

srt://192.168.1.200:9000?mode=caller
srt://remote.server.com:90007?passphrase=secret

RTP (Real-time Protocol):

rtp://239.0.0.1:5004

HTTP/HLS:

https://stream.example.com/live/playlist.m3u8
http://192.168.1.100/stream.m3u8

File (for testing):

file:///home/user/test.mp4

Step 3: Input Format (Optional) Specify the container format if FFMPEG can't
auto-detect.

Common formats: - rtsp - RTSP streams - mpegts - MPEG Transport Stream - flv -
Flash Video - mp4 - MP4 container - Leave empty for auto-detection (recommended)

Step 4: Additional Settings

Buffering (MB): - Default: 2 MB - Range: 1-10 MB - Higher buffering = more latency,
more stable playback - Lower buffering = less latency, potential stuttering

Reconnect delay (seconds): - How long to wait before retrying connection after
disconnect - Default: 5 seconds - Useful for unstable network streams

Hardware decoding (checkbox): - Enabled: Use GPU decoding (lower CPU usage) -
Disabled: Use CPU decoding - Recommended for high-bitrate streams

Step 5: Preview Use the Preview tab to test connectivity before saving (see Section
5.6).

Important for FFMPEG sources: Preview verifies the stream is reachable and
decodes properly. This catches connection issues before your event goes live.

FFMPEG Source Troubleshooting

Issue Cause Solution

Connection timeout =~ Network unreachable Check IP, firewall, routing

Authentication failed Wrong credentials Verify username/password in URL

Protocol not supported Missing codec Install required FFMPEG libraries
Choppy playback Network bandwidth Increase buffering, check network quality
High latency Large buffer Reduce buffering value

FFMPEG Source Best Practices

1. Test before production: Use Preview tab to verify connectivity

2. Use static IPs: Avoid DHCP for critical sources

3. Monitor bandwidth: High-bitrate streams need adequate network capacity

4. Enable reconnect: Network streams can drop; auto-reconnect is essential

5. Secure credentials: Use environment variables or config files (don't hardcode
passwords)

5.5 Common Source Configuration Patterns

Here are real-world examples of combining source types:

Pattern 1: News Show

Event: Morning News (08:00:00, duration 01:00:00)

|—— Media: IntroVideo (/videos/news intro.mp4, loop=false)

— FFMPEG: LiveFeed (rtsp://camera.local/stream)

— Browser: LowerThird (https://graphics.local/lowerthird.html)
L— Browser: TickerBar (https://graphics.local/ticker.html)

Pattern 2: Automated Playlist

Event: Music Videos (14:00:00, duration 02:00:00)
F— VLC: Playlist (/playlists/afternoon.xspf)
L— Browser: SongInfo (https://overlay.local/nowplaying.html)

Pattern 3: Live Stream Relay

Event: Remote Event (19:00:00, duration 03:00:00)

— FFMPEG: MainFeed (srt://remote.server:9000?mode=caller)

— FFMPEG: BackupFeed (rtmp://backup.server/live)

L— Browser: EventInfo (https://overlay.local/event details.html)

Pattern 4: Looping Background

Event: Holding Screen (23:00:00, duration 08:00:00)
— Media: BackgroundLoop (/videos/holding.mp4, loop=true)
L— Browser: Clock (file:///overlays/clock.html)

5.6 Preview Tab - Optional Testing Tool

The Preview tab is an optional auxiliary feature that allows you to test source
configurations before committing them to your schedule. While Scene Scheduler's
primary purpose is automated time-based scheduling, this preview tool helps catch
configuration errors during setup.

Important: Preview is NOT required for Scene Scheduler operation. It's a
convenience feature for the Editor View - the backend scheduler operates
independently and doesn't use preview functionality.

5.6.1 Why Use Preview?

Benefits of this optional tool: 1. Verify connectivity: Test network streams before
scheduling 2. Check file paths: Ensure media files exist and are readable 3. Test
visual appearance: See how sources render before going live 4. Catch errors early:
Identify issues during configuration, not during scheduled broadcast 5. Save time:
No need to wait for event time to verify configuration

Common issues caught by preview: - Invalid file paths (typos, missing files) -
Unreachable network streams (firewall, wrong IP) - Malformed URLs (syntax errors) -
Broken browser sources (404 errors, CORS issues) - Codec problems (unsupported
formats)

5.6.2 How Preview Works

Scene Scheduler's preview system uses HLS (HTTP Live Streaming) to generate a
browser-playable stream of your source:

Technical flow: 1. User clicks "p Preview Source" button 2. Backend spawns hls-
generator process with source configuration 3. hls-generator uses OBS libraries to: -
Create a temporary OBS scene - Add the source to the scene - Encode to H.264 -
Segment into HLS chunks (.ts files) - Generate playlist manifest (m3u8) 4. Frontend
polls for playlist availability (max 30 seconds) 5. Once ready, HLS.js player loads and
plays the stream 6. Preview automatically stops after 30 seconds (resource cleanup)

Why HLS? - Browser-native: Works in all modern browsers without plugins -
Adaptive: Handles varying network conditions - Standard: Industry-standard
streaming protocol - Efficient: Low latency, small overhead

5.6.3 Using the Preview Tab

Step 1: Configure your source Before previewing, fill out the source configuration
in the appropriate tab: - Media tab: Set source name and file path - Browser tab: Set
source name, URL, and dimensions - FFMPEG tab: Set source name and input URL

Step 2: Switch to Preview Tab Click the "Preview" tab in the event modal.

Step 3: Select Source The Preview tab shows a dropdown with all configured
sources for this event:

Preview Source

Source: [IntroVideo v]

[» Preview Source] ||

Select the source you want to preview from the dropdown.

Step 4: Start Preview Click the "p Preview Source" button.

What happens: 1. Button text changes to show status: - Starting
preview..." (requesting from backend) - " Waiting for stream..." (waiting for HLS
playlist) - Video player appears and starts playback 2. Video plays in the modal 3.
Preview automatically stops after 30 seconds

Step 5: Observe Watch the video to verify: - Correct content (right file/stream) -
Visual quality (resolution, bitrate) - Audio (if applicable) - No errors or artifacts

Step 6: Stop Preview (Optional) You can manually stop preview before the 30-
second timeout: - Click the "l Stop Preview" button - Or close the modal (cleanup
happens automatically)

5.6.4 Preview Button States and Messages

The preview button changes appearance and text to indicate status:

State 1: Idle (Default)

| |
| » Preview Source | (Blue background, clickable)
| |

Meaning: Ready to start preview. Click to begin.

State 2: Starting

| |
| Starting preview... | (Blue background, disabled)
| |

Meaning: Request sent to backend, waiting for response. Duration: 1-2 seconds
typically.

State 3: Waiting for Stream

| 1
| Waiting for stream... | (Blue background, disabled)
| |

Meaning: Backend is generating HLS stream, frontend is polling for playlist.
Duration: 5-30 seconds depending on source type. Timeout: 30 seconds max. If
stream doesn't start, see troubleshooting below.

State 4: Playing

| m Stop Preview | (Red background, clickable)
| |

Meaning: Stream is playing. Video visible below button. Action: Click to stop early
(or wait for 30-second auto-stop).

State 5: Error

| o Error: Connection timeout | (Amber background, disabled)
[|

Meaning: Preview failed. Error message explains why. Duration: Message shown for
5 seconds, then resets to idle state. Action: Fix the error (see error messages below)
and retry.

State 6: Stopped (Auto or Manual)

| i Preview automatically stopped after 30 seconds | (Sky blue, disabled)
[|

Meaning: Preview completed normally (30-second timeout reached). Duration:
Message shown for 5 seconds, then resets to idle state. Action: None required. Click
again to re-preview.

5.6.5 Preview Error Messages
When preview fails, the button displays an error message with specific details:

Error: "Connection timeout"

Full message: » Error: Connection timeout
Cause: Backend couldn't reach the source within 30 seconds.

Common reasons: - FFMPEG source: Network stream is unreachable (wrong IP,
firewall blocking) - Browser source: URL doesn't respond (server down, DNS failure) -
Media source: File system is slow (network mount delay)

Solutions: 1. Network streams: Check IP address, port, and firewall rules 2.
Browser sources: Test URL in a regular browser 3. Media files: Verify file path and
permissions 4. Network issues: Check connectivity with ping or curl

Error: "File not found"

Full message: » Error: File not found: /path/to/file.mp4
Cause: Media source file doesn't exist at the specified path.

Solutions: 1. Check file path for typos 2. Verify file exists: 1s -la /path/to/file.mp4
3. Check permissions: File must be readable by Scene Scheduler process 4. Use
absolute paths (not relative)

Error: "Invalid URL"

Full message: » Error: Invalid URL format
Cause: Browser source or FFMPEG source URL is malformed.

Common issues: - Missing protocol: Use https://example.com, not example.com -
Invalid characters: URL encoding needed for special chars - Wrong protocol: Use
rtsp:// for RTSP, not http://

Solutions: 1. Check URL syntax 2. Test URL in browser or media player 3. URL-
encode special characters 4. Verify protocol matches source type

Error: "Stream failed to start"

Full message: » Error: Stream failed to start
Cause: hls-generator process crashed or failed to initialize.

Common reasons: - Unsupported codec (source uses codec OBS can't decode) -
Corrupted media file - OBS libraries missing or misconfigured

Solutions: 1. Check hls-generator logs (if available) 2. Test file in OBS directly 3.
Re-encode media file to H.264/AAC 4. Verify OBS libraries are installed

Error: "Browser source load error"

Full message: » Error: Browser source failed to load

Cause: Browser source URL returned an error (404, 500, etc.) or failed to render.

Common reasons: - 404 Not Found (wrong URL path) - CORS errors (cross-origin
restrictions) - JavaScript errors in page - SSL certificate errors (HTTPS)

Solutions: 1. Open URL in regular browser, check console for errors 2. Verify URL is
publicly accessible (or locally reachable) 3. Check server logs for errors 4. For HTTPS:
Ensure valid SSL certificate

Error: "Preview already running"”

Full message: » Error: Preview already in progress
Cause: Attempted to start a second preview while one is already active.

Solution: Wait for current preview to finish (30 seconds) or manually stop it first.
Error: "Authentication required"

Full message: » Error: Authentication required

Cause: Network stream (RTSP, RTMP) requires credentials that weren't provided or
are incorrect.

Solutions: 1. Include credentials in URL: - RTSP: rtsp://
username:password@camera.local/stream - RTMP: rtmp://
username:password@server.local/live 2. Verify credentials are correct 3. Check
camera/server authentication settings

5.6.6 Preview Timeout (30 seconds)

All previews automatically stop after 30 seconds to prevent resource exhaustion.

Why 30 seconds? - Resource management: Each preview consumes CPU/GPU
(encoding) and disk space (HLS segments) - Sufficient for testing: 30 seconds is
enough to verify source functionality - Prevents forgotten previews: Users might
leave modal open; auto-stop ensures cleanup

What happens at timeout: 1. Frontend receives previewStopped WebSocket
message 2. HLS.js player is destroyed gracefully 3. Video element is cleared 4. Button
shows info message: "i Preview automatically stopped after 30 seconds" 5. Message
auto-clears after 5 seconds 6. Button returns to idle state 7. Backend cleans up: -
Kills hls-generator process - Deletes temporary HLS files - Releases resources

Want to preview longer? Click "p Preview Source" again after timeout to restart
the preview.

5.6.7 Previewing Multiple Sources

If your event has multiple sources (e.g., background video + overlay + camera feed),
preview each individually:

Workflow: 1. Configure all sources in their respective tabs 2. Switch to Preview tab
3. Select first source from dropdown 4. Click "p Preview Source", watch it play for 30
seconds 5. After timeout (or manual stop), select next source from dropdown 6.
Repeat until all sources are verified

Why individual preview? - Isolation: Test each source independently -
Troubleshooting: Identify which specific source has issues - Performance:
Generating multiple previews simultaneously is resource-intensive

Note: Preview shows sources individually, not combined. To see all sources
together as they'll appear in OBS, save the event and trigger it manually (set time 2
minutes in future).

5.6.8 Preview Performance Considerations

Preview generation is resource-intensive:

CPU/GPU usage: - Encoding to H.264 requires CPU or GPU - Browser source
rendering uses GPU (CEF chromium) - Multiple previews compound resource usage

Disk usage: - Each preview generates 30 seconds of HLS segments - Typical size:
5-15 MB per preview - Automatic cleanup after preview stops

Network usage: - FFMPEG sources download the network stream - Browser sources
fetch remote content - HLS segments are served over local HTTP

Best practices: 1. Preview one source at a time: Don't run multiple previews in
parallel 2. Close modal when done: Releases resources immediately 3. Use preview
sparingly: Only when configuring new sources 4. Trust working configs: Once a
source is verified, no need to preview every time

5.6.9 Preview Troubleshooting Checklist

If preview fails or behaves unexpectedly, work through this checklist:

Backend connectivity - Is Scene Scheduler running? (check logs) - Is WebSocket
connected? (check connection indicator in Ul) - Can you create events and see them
in the schedule? (verify basic functionality)

Source configuration - Is source name filled in? - Is file path/URL correct? (no
typos) - For media sources: Does file exist? 1s -la /path/to/file.mp4 - For network
sources: Is source reachable? ping <ip>or curl <url>

hls-generator binary - Does hls-generator exist in paths.hlsGenerator location? -
Is it executable? chmod +x hls-generator - Does it run standalone? ./hls-generator
--help

HLS output directory - Does webServer.hlsPath directory exist? - Is it writable?
touch hls/test.txt & rm hls/test.txt - Check disk space: df -h

Browser/network - Try in different browser (rule out browser-specific issues) -
Check browser console for JavaScript errors (F12 — Console) - Disable browser
extensions that might block video playback - Check network: Can browser reach
backend? (try http://localhost:8080)

Logs - Check Scene Scheduler logs for preview-related errors - Look for messages
containing "preview", "hls-generator", or "sourcepreview"

If all checks pass and preview still fails, see Section 10 (Troubleshooting) for
advanced diagnostics.

5.6.10 Preview vs. Production Behavior

Important: Preview shows a close approximation of how sources will appear in
OBS, but there are subtle differences:

Similarities: - Same source content (file, URL, stream) - Same decoding (OBS
libraries) - Same video/audio output - Verifies connectivity and file existence

Differences: - Preview uses isolated OBS instance (not your main OBS) - Preview
doesn't show source positioning/cropping (these are scene-level settings) - Preview
doesn't show filters or effects (applied in OBS, not at source level) - Preview uses
HLS encoding (slight quality loss vs. OBS direct output) - Preview latency is higher
(HLS segmenting adds 3-6 seconds)

What this means: - Use preview for: Verifying source works, content is correct,
connectivity is good - Don't rely on preview for: Exact color grading, precise
timing, filter effects, final positioning

Final validation: After saving your event and before production use, trigger it
manually in OBS (set time to 2 minutes in future) and observe the full scene
composition.

5.6.11 Advanced: Preview of browser _source with CEF

Browser sources require CEF (Chromium Embedded Framework) to render:

How it works: 1. hls-generator initializes CEF 2. CEF loads the specified URL in a
headless browser 3. Page JavaScript/CSS executes 4. Rendered frames are captured
and encoded to H.264 5. HLS segments generated from encoded stream

Special considerations for browser_source preview:

Longer startup time: - CEF initialization: 2-5 seconds - Page loading (JavaScript,
assets): 2-10 seconds - Total: 5-15 seconds before stream starts - Be patient with
"Waiting for stream..." status

Transparency: - Preview shows transparency as black background - In OBS,
transparency is respected (overlay shows over underlying sources) - Don't worry if
preview background is black

Interactive elements: - Mouse/keyboard input doesn't work in preview (CEF is
headless) - Animations and timers work normally - WebSocket/API calls work (if
page uses them)

Resource usage: - CEF is memory-intensive (200-500 MB per instance) - GPU usage
can be high for complex pages - Limit browser source previews to avoid system
overload

Debugging browser_source issues: 1. Open URL in regular Chrome/Chromium
(check for JavaScript errors) 2. Use simple test page first (ensure CEF works):
file:///home/user/test.html 3. Check CEF logs (if enabled in config) 4. Verify OBS
browser source plugin is installed (CEF dependency)

6. System Configuration

Scene Scheduler is configured through config.json, located in the application
directory. This file controls OBS connectivity, web server settings, scheduling
behavior, and file paths.

6.1 Configuration File Location

Default location:

/path/to/scenescheduler/config.json

The configuration file must be in the same directory as the scenescheduler
executable. If the file doesn't exist, create it with the template below.

6.2 Complete Configuration Template

Here's a fully commented config.json template:

json
{

"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": "your-obs-websocket-password"

},

"webServer": {

"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"

},
"schedule": {
"jsonPath": "schedule.json",
"scheduleSceneAux": "scheduleSceneAux"
b
"paths": {
"hlsGenerator": "./hls-generator"
},
"logging": {
"level": "info",
"format": "text"
}
}

6.3 Configuration Sections
6.3.1 OBS WebSocket Configuration (obsWebSocket)

Controls connection to OBS Studio via the WebSocket protocol.

host (string, required) - OBS Studio hostname or IP address - Default: "localhost"
(OBS on same machine) - Examples: - "localhost" - OBS on local machine -
"192.168.1.100" - OBS on remote machine (same network) - "obs.local" - OBS via
hostname (requires DNS/mDNS)

port (integer, required) - WebSocket server port - Default: 4455 (OBS default) -
Range: 1024-65535 - Note: Must match port configured in OBS (Tools = WebSocket
Server Settings)

password (string, optional) - WebSocket authentication password - Default: "*
(empty = no authentication) - Security: Highly recommended for production use -
Must match: Password set in OBS WebSocket settings

Example configurations:

Local OBS, no password:

json

"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": ""

}
Local OBS, with password:

json
"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": "s3cur3p@sswOrd"

}
Remote OBS:

json

"obsWebSocket": {
"host": "192.168.1.50",
"port": 4455,
"password": "remote password"

}

Troubleshooting OBS connection: - Connection refused: Check OBS is running
and WebSocket server is enabled - Authentication failed: Verify password matches
OBS settings - Host unreachable: Check firewall, network routing (ping <host>)

6.3.2 Web Server Configuration (webServer)

Controls the HTTP server that hosts the web interface and HLS preview streams.

host (string, required) - Network interface to bind to -Options: - "0.0.0.0" - Bind to
all interfaces (accessible from network) - "localhost" or "127.0.0.1" - Local only
(most secure) - Specific IP - Bind to specific interface (e.g., "192.168.1.10")

When to use each: - 0.0.0.0: Multi-device access (recommended for production) -
localhost: Testing, single-user, security-sensitive environments

port (integer, required) - HTTP server port - Default: 8080 - Range: 1024-65535
(avoid 80/443 unless running as root) - Note: Must be free (not used by other
applications)

hlsPath (string, required) - Directory for HLS preview files (relative to executable) -
Default: "hls" - Important: This is the correct configuration field (NOT
paths.hlsBase) - Directory must: - Exist (create with mkdir hls) - Be writable by
Scene Scheduler process - Have sufficient disk space (each preview uses 5-15 MB)

Example configurations:

Network-accessible (recommended):

json

"webServer": {
"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"

}

Local-only (secure):

json

"webServer": {
"host": "localhost",
"port": 8080,
"hlsPath": "hls"

Custom port:

json
"webServer": {
"host": "0.0.0.0",
"port": 3000,
"hlsPath": "preview files"

}

Accessing the web interface: - Local: http://localhost:8080 - From network:
http://<server-ip>:8080 (e.g., http://192.168.1.100:8080)

Troubleshooting web server: - Port already in use: Change port to unused value
(e.g., 8081, 3000) - Cannot access from network: Check host is 0.0.0.0, verify
firewall allows port - Permission denied (port 80): Use port >1024 or run as root
(not recommended)

6.3.3 Schedule Configuration (schedule)

Controls schedule file location and scene naming.

jsonPath (string, required) - Path to schedule JSON file (relative to executable) -
Default: "schedule.json" - Format: JSON array of events (see Section 11.1 for
schema) - Permissions: Must be readable and writable - Backup: Recommended to
keep backups of this file

scheduleSceneAux (string, required) - Name of the auxiliary OBS scene used for
staging - Default: "scheduleSceneAux" - Auto-creation: Scene Scheduler
automatically creates this scene if it doesn't exist - Purpose: Hidden scene where
sources are preloaded before transitions

Important notes: - The auxiliary scene name is case-sensitive - The scene should
remain empty (Scene Scheduler manages its content automatically) - Don't delete
this scene while Scene Scheduler is running - If you change the scene name in
config.json, Scene Scheduler will create a new scene with that name

Example configurations:

Default:

json
"schedule": {
"jsonPath": "schedule.json",

"scheduleSceneAux": "scheduleSceneAux"

Custom schedule file location:

json

"schedule": {
"jsonPath": "/var/lib/scenescheduler/production_schedule.json",
"scheduleSceneAux": "scheduleSceneAux"

}

Custom auxiliary scene name:

json
"schedule": {
"jsonPath": "schedule.json",
"scheduleSceneAux": "staging scene"
}

Troubleshooting schedule: - Schedule not loading: Check jsonPath file exists and
is valid JSON - Scene not found error: Check that scheduleSceneAux name in
config.json matches (Scene Scheduler creates it automatically) - Permission
denied: Ensure Scene Scheduler can read/write schedule file

6.3.4 Paths Configuration (paths)

Controls locations of external binaries and tools.

hlsGenerator (string, required) - Path to hls-generator executable (relative to main
executable) - Default: "./hls-generator" - Purpose: Generates HLS preview
streams - Requirements: - Must exist and be executable (chmod +x hls-generator) -
Must be compatible with your system (Linux x86 64) - Must have OBS libraries
available

Example configurations:

Default (same directory):

json
"paths": {
"hlsGenerator": "./hls-generator"

}

Absolute path:

json
"paths": {
"hlsGenerator": "/usr/local/bin/hls-generator"
}
Subdirectory:
json
"paths": {
"hlsGenerator": "./bin/hls-generator"
}

Troubleshooting hls-generator: - File not found: Verify file exists at specified
path - Permission denied: Run chmod +x hls-generator - Exec format error:
Binary not compatible with your system (wrong architecture)

6.3.5 Logging Configuration (logging)

Controls application logging behavior.

level (string, optional) - Log verbosity level - Options: "debug", "info", "warn",
"error" - Default: "info" - Recommendation: - Production: "info" or "warn" -
Debugging: "debug" - Critical only: "error"

format (string, optional) - Log output format - Options: - "text" - Human-readable
(default) - "json" - Machine-parseable (for log aggregation tools) - Default: "text"

Example configurations:

Production (default):

json

"logging": {
"level": "info",
"format": "text"

Debugging:

json
"logging": {

"level": "debug",

"format": "text"
}
Log aggregation:
json
"logging": {
"level": "info",
"format": "json"
}
Minimal logging:
json
"logging": {
"level": "error",
"format": "text"
}

Log levels explained: - debug: All messages (very verbose, includes internal state
changes) - info: General information (startup, connections, event triggers) - warn:
Warnings (non-critical issues, deprecated features) - error: Errors only (failures,
exceptions)

6.4 Environment Variables

Some settings can be overridden with environment variables (useful for Docker,
systemd):

0BS_WS_HOST - Override obsWebSocket.host

bash
export OBS WS H0ST="192.168.1.50"
./scenescheduler

0BS_WS_PORT - Override obsWebSocket.port

bash
export OBS WS PORT="4456"
./scenescheduler

0BS_WS_PASSWORD - Override obsWebSocket.password (recommended for security)

bash
export OBS WS PASSWORD="s3cur3p@ss"
./scenescheduler

WEB_SERVER_PORT - Override webServer.port

bash
export WEB SERVER PORT="3000"
./scenescheduler

Priority: Environment variables > config.json > defaults

6.5 Configuration Validation
Scene Scheduler validates configuration on startup:

Validation checks: 1. Config file exists and is valid JSON 2. Required fields are
present 3. Port numbers are in valid range (1-65535) 4. File paths are accessible 5.
HLS directory exists and is writable

Startup behavior: - Valid config: Application starts normally - Invalid config:
Error logged and application exits - Missing config: Uses defaults (may fail if OBS
requires password)

Example validation errors:

Invalid JSON:

FATAL: Failed to parse config.json: invalid character '}' looking for beginning of objec

Solution: Fix JSON syntax (check for missing commas, quotes)

Missing required field:

FATAL: Missing required config field: obsWebSocket.host

Solution: Add missing field to config.json

Invalid port:

FATAL: Invalid port number: 99999 (must be 1-65535)

Solution: Use valid port number
6.6 Configuration Examples for Common Scenarios
Scenario 1: Single Computer Setup

Both OBS and Scene Scheduler on the same machine, accessed locally only.

json
{
"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": ""
b
"webServer": {
"host": "localhost",
"port": 8080,
"hlsPath": "hls"
}
"schedule": {
"jsonPath": "schedule.json",
"scheduleSceneAux": "scheduleSceneAux"
b
"paths": {
"hlsGenerator": "./hls-generator"
}
}

Access: http://localhost:8080
Scenario 2: Production Server (Network Access)

Scene Scheduler accessible from multiple devices on the network.

json
{

"obsWebSocket": {
"host": "localhost",
"port": 4455,
"password": "production password 123"

},

"webServer": {

"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"

I

"schedule": {
"jsonPath": "/var/lib/scenescheduler/schedule.json",
"scheduleSceneAux": "scheduleSceneAux"
},
"paths": {
"hlsGenerator": "/opt/scenescheduler/hls-generator"
},
"logging": {
"level": "info",
"format": "text"
}

Access: http://192.168.1.100:8080 (use server's IP)
Scenario 3: Remote OBS Control

Scene Scheduler on a different machine than OBS.

json
{
"obsWebSocket": {
"host": "192.168.1.50",
"port": 4455,
"password": "obs remote password"
},
"webServer": {
"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"
},
"schedule": {
"jsonPath": "schedule.json",
"scheduleSceneAux": "scheduleSceneAux"
}
"paths": {
"hlsGenerator": "./hls-generator"
}
}

Requirements: - OBS machine (192.168.1.50) must have WebSocket enabled -
Firewall must allow port 4455 - Both machines on same network (or VPN)

Scenario 4: Docker Deployment

Using environment variables for dynamic configuration.

config.json (minimal):

json
{

"schedule": {
"jsonPath": "/data/schedule.json",
"scheduleSceneAux": "scheduleSceneAux"

},
"paths": {
"hlsGenerator": "/app/hls-generator"

}
}

Docker run command:

bash
docker run -d \
-e OBS WS HOST=192.168.1.50 \
-e 0BS_WS_PORT=4455 \
-e 0BS WS PASSWORD=secure password \
-e WEB_SERVER PORT=8080 \
-v /path/to/schedule. json:/data/schedule.json \
-p 8080:8080 \
scenescheduler:latest

6.7 Security Considerations

OBS WebSocket Password: - Always set a password in production - Use strong,
unique passwords (16+ characters) - Don't commit passwords to version control -
Use environment variables for sensitive values

Web Server Access: - Use host: "localhost" if network access not needed -
Configure firewall to restrict web server port access - Don't expose to public
internet without authentication - Consider reverse proxy (nginx) with HTTPS for
production

File Permissions: - Schedule file: chmod 600 schedule.json (owner read/write only)
- Config file: chmod 600 config.json - HLS directory: chmod 700 hls/

Backup Strategy: - Regular backups of schedule.json - Store backups securely
(encrypted if sensitive) - Test restore procedure periodically

6.8 Updating Configuration

Without restarting: - Schedule changes (schedule.json) apply automatically (hot-
reload) - Source configuration changes apply on next event trigger

Requires restart: - OBS WebSocket settings - Web server host/port - File paths -
Logging configuration

How to restart:

Linux:

bash
Stop
pkill scenescheduler

Restart
./scenescheduler

Or with systemd:

bash
sudo systemctl restart scenescheduler

Windows:

cmd

REM Stop: Press Ctrl+C in the command prompt window
REM Or: Close the command prompt window

REM Or: Use Task Manager to end scenescheduler.exe

REM Restart
scenescheduler.exe

Configuration change checklist: 1. Edit config.json with a text editor 2.
Validate JSON syntax (use jg . config.json or online validator) 3. Back up
previous config (optional but recommended) 4. Restart Scene Scheduler if needed
5. Verify connection (check web interface, OBS connection indicator) 6. Test
functionality (create test event)

7. How It Works Internally

Understanding Scene Scheduler's internal mechanisms helps you optimize
configurations, troubleshoot issues, and predict behavior during complex scenarios.

7.1 Staging System

One of Scene Scheduler's most important features is the staging system, which
ensures smooth, seamless transitions without visible loading delays.

Why Staging Exists
Without staging, scene transitions would show loading delays:

Event triggers - OBS switches scene - Sources load - User sees buffering

With staging, sources are prepared in advance:

Event triggers - Staging process (5 steps from Section 2.3) - Instant transition

The staging system uses the scheduleSceneAux auxiliary scene as a backstage area
where sources are created and initialized before being moved to the visible scene.

Staging Process Overview

When an event time arrives, Scene Scheduler executes the 5-step process described
in Section 2.3:

1. STAGING: Sources created in scheduleSceneAux (invisible to viewers)
2. ACTIVATION: Sources moved to target scene

3. SCENE SWITCH: OBS transitions to target scene

4. CLEANUP: Temporary elements removed from scheduleSceneAux

5. MONITOR: Event runs for its configured duration

Benefits

* No visible loading: Sources prepared before shown to viewers

e Atomic transitions: Either complete success or safe rollback

» Resource efficiency: Cleanup prevents memory leaks and orphaned sources
» Continuous operation: System handles 24/7 automated scheduling

Staging Optimization Tips

1. Use local files when possible: Network-mounted files may add latency
2. Optimize browser sources: Keep pages simple, minimize JavaScript

3. Test network streams: Verify connectivity before scheduling

4. Monitor resource usage: Check CPU/GPU during transitions

7.2 EventBus System (Real-Time Synchronization)

Scene Scheduler uses an EventBus architecture to synchronize state across all
components:

|
| EventBus |
| |
1 1						
	Scheduler		OBS WS		WebSocket	
	Engine		Connection		Clients	
v v v						
] Central Event Stream						
! b						
Event Types

Schedule Events: - scheduleUpdated: Triggered when schedule.json changes -
eventTriggered: An event's time has arrived - eventCompleted: An event's duration
has expired

OBS Events: - obsConnected: WebSocket connection established - obsDisconnected:
WebSocket connection lost - sceneChanged: OBS switched scenes (manual or
automatic) - sourceCreated: A source was added to OBS - sourceRemoved: A source
was deleted from OBS

Frontend Events: - clientConnected: Web browser connected via WebSocket -
clientDisconnected: Web browser closed connection - scheduleRequest: Client
requested current schedule - previewRequest: Client requested source preview

Event Flow Example: Adding an Event

1. User clicks "Save Event" in web interface
L. Frontend sends WebSocket message: { type: "addEvent", payload: {...} }

2. Backend receives message
L. validates event data
L, Appends to schedule.json
L. EventBus emits: scheduleUpdated

3. All subscribed components react:
- Scheduler Engine: Recalculates next trigger time
- WebSocket Handler: Broadcasts update to all clients
L. File Watcher: Updates in-memory schedule

4. All connected web clients receive update
L, Monitor View: Updates event list
L, Editor View: Shows new event in list

Why EventBus Matters

Benefits: - Loose coupling: Components don't directly depend on each other -
Real-time sync: All clients instantly reflect changes - Extensibility: New features
can subscribe to events without modifying existing code - Debugging: Event log
shows complete system activity

7.3 OBS WebSocket Communication

Scene Scheduler communicates with OBS through the OBS WebSocket protocol
(V5.x).

Connection Lifecycle

Phase 1: Initial Connection

Scene Scheduler starts

WebSocket client attempts connection to OBS

If password required, authentication challenge occurs
Connection established, identified message received
Scene Scheduler subscribes to OBS events

u b WN =

Phase 2: Steady State

- Heartbeat messages every 10 seconds (keepalive)
- Scene Scheduler sends requests (GetScenelList, Createlnput, etc.)
- 0OBS sends responses and event notifications

Phase 3: Reconnection

If connection lost:

1. Scene Scheduler detects disconnect

2. Automatic reconnection attempts begin (exponential backoff)
3. Retry intervals: 1s, 2s, 4s, 8s, 16s, max 30s

4. On reconnect: Re-sync state, re-subscribe to events

Key OBS WebSocket Operations

Scene Management: - GetScenelList: Retrieve all scenes (for dropdown population)
- SetCurrentProgramScene: Switch to a scene - GetCurrentProgramScene: Query active
scene

Source Management: - CreateInput: Add a new source to a scene - RemoveInput:
Delete a source - SetInputSettings: Configure source properties - GetInputSettings:
Query source configuration

Scene Item Management: - GetSceneltemList: List sources in a scene -
SetSceneItemEnabled: Show/hide a source - SetSceneItemTransform: Position, scale,
Crop sources

Error Handling

Connection errors: - Authentication failure: Log error, exit (requires manual
config fix) - Host unreachable: Retry with exponential backoff - Protocol
mismatch: Log error, exit (OBS version incompatible)

Command errors: - Scene not found: Log warning, skip transition - Source
creation failed: Log error, continue with other sources - Timeout: Retry once, then
log error and continue

7.4 Schedule Hot-Reload

Scene Scheduler watches schedule.json for changes and automatically reloads
without restarting:

How Hot-Reload Works

File Watching:

1. On startup, Scene Scheduler begins watching schedule.json
2. File system events (write, modify) trigger reload
3. Debouncing prevents multiple reloads (waits 500ms after last change)

Reload Process:

Detect file change

Read updated schedule.json

Parse and validate JSON

If valid:

- Replace in-memory schedule

- Recalculate next event trigger time

|- Broadcast update to all connected clients
L. Log: "Schedule reloaded (N events)"

5. If invalid:

- Keep previous schedule (don't break running system)
- Log error with JSON parse details

L. Notify clients of error

B WN =

What Triggers Reload

Automatic triggers: - Frontend saves event (add, edit, delete) - External editor
modifies schedule.json (vim, nano, etc.) - Script writes updated schedule
(automation)

Does NOT trigger reload: - Config.json changes (requires restart) - Source file
changes (affects next staging)

Reload Edge Cases

During staging (event trigger in progress): - Reload occurs immediately -
Currently staging event continues with old configuration - Next event uses new
configuration

During active event (event currently running): - Reload occurs immediately -
Active event continues with old configuration - Sources remain as originally
configured - Cleanup happens at original duration

Recommendation: Avoid editing events that are actively running. Edit future
events instead.

7.5 Preview Process Lifecycle
Understanding the preview system's internal flow helps troubleshoot issues:
Preview Request Flow

Phase 1: Request Initiated (Frontend)

User clicks "» Preview Source" button

Frontend gathers source configuration (name, type, URL/path, settings)
. WebSocket message sent: { type: "startPreview", payload: {...} }
Button state: " Starting preview..."

H W N

Phase 2: Backend Processing

Backend receives startPreview message

Validates source configuration

Generates unique preview ID and connection ID
Creates preview session in memory

Spawns hls-generator subprocess with source config
Response sent to frontend: { previewID, hlsURL }

OO Ul WN B

Phase 3: HLS Generation (hls-generator process)

hls-generator initializes OBS libraries
Creates temporary OBS scene

Adds source to scene (media/browser/ffmpeg)
Source loads and initializes:

- Media: File opened and buffered

- Browser: CEF starts, loads URL

- FFMPEG: Network connection established
Encoding begins (H.264 + AAC)

HLS segments generated (.ts files)

Playlist manifest written (.m3u8)

First segment verification (checks for #EXTINF tag)

W N

0 N O U

Phase 4: Frontend Polling

1. Frontend polls for playlist: GET /hls/{previewID}/playlist.m3u8
2. Retry intervals: 500ms, 1ls, 2s, 4s, 8s (exponential backoff)

3.
4.

Timeout: 30 seconds max
Button state: " Waiting for stream..."

Phase 5: Playback Begins

O &~ WN -

Playlist found, HLS.js initializes
HLS.js downloads segments and plays
Video element shows stream

Button state: "m Stop Preview"
30-second timeout timer starts

Phase 6: Cleanup (Auto or Manual)

u B~ WN =

. Timeout reached (30s) OR user clicks "Stop Preview"

Backend sends previewStopped WebSocket message

Frontend gracefully destroys HLS.js (prevents 404 errors)
Video element cleared

Backend cleanup:

}a Kill hls-generator process (SIGTERM)

- Wait 5s for graceful shutdown

- Force kill if still running (SIGKILL)

|- Delete HLS directory and all segments

L. Remove preview session from memory

{

. Button state: "i Preview automatically stopped after 30 seconds"
. After 5s, button resets to idle state

Preview Connection Tracking

Scene Scheduler v1.6 uses connection IDs (not IP addresses) to track preview
sessions:

Why connection IDs? - NAT-safe (multiple clients behind same NAT have unique
IDs) - Secure (no IP address exposure in logs) - Reliable (survives network
changes)

Connection ID lifecycle:

u b WN =

. WebSocket connection established

Unique ID generated: "conn <timestamp> <random>"

ID associated with preview session

On disconnect: All previews for that connection are cleaned up
Prevents orphaned preview processes

7.6 Cleanup and Resource Management

Scene Scheduler implements thorough cleanup to prevent resource leaks:

Event Cleanup (After Duration Expires)

1. Event duration timer fires
2. Cleanup sequence begins:
- Get list of dynamic sources created by this event
- For each source:
| |- Check if still exists in OBS
| F- Remove from target scene
| L Delete source from 0BS
- Clear scheduleSceneAux scene
L. Log: "Event cleanup completed"
3. System ready for next event

Idempotent cleanup: All cleanup operations are safe to call multiple times: -
delete() on non-existent map key: no-op - os.RemoveAll() on missing directory: no
error - OBS source deletion of missing source: ignored

Preview Cleanup

1. Preview timeout (30s) or manual stop
2. Cleanup sequence:
}a Stop timeout timer (if running)
- Send previewStopped WebSocket message
- Wait 100ms (ensure message delivered)
- Kill hls-generator process:
| |- Send SIGTERM (graceful shutdown)
| |- wait 5 seconds
| Ls Send SIGKILL if still running (force)
}a Delete HLS directory: rm -rf hls/{previewID}/
}a Remove preview session from memory map
L. Log: "Preview cleanup completed"

WebSocket Client Cleanup

When client disconnects:
1. WebSocket handler detects connection close
2. Get connection ID
3. Check for active previews with this connection ID
4. For each preview:
L, Run full preview cleanup

5. Remove client from broadcast list
6. Log: "Client disconnected, cleaned up N previews"

Application Shutdown Cleanup

When Scene Scheduler exits (SIGTERM/SIGINT):
1. Signal handler triggered
2. Graceful shutdown sequence:
- Stop accepting new requests
- Stop all active previews
- Clean up all HLS directories
- Stop all staging processes
- Close OBS WebSocket connection
- Close web server
L. Flush logs
3. Exit with code 0

7.7 State Synchronization
Scene Scheduler maintains consistency across multiple components:

Initial State Synchronization (Client Connect)

When web client connects:
1. WebSocket connection established

2. Client sends: { type: "getInitialState" }
3. Backend responds with:

- Current schedule (all events)
- Active event (if any)
- 0BS connection status
|- Available OBS scenes
L. Current OBS scene
4. Client renders UI with this state

Ongoing State Sync

Schedule changes:

User adds event - Backend updates schedule.json - EventBus emits scheduleUpdated - All

OBS state changes:

Manual scene change in 0BS - WebSocket event received - EventBus emits sceneChanged - Al

Preview state:

Preview starts - WebSocket message to requesting client only - Button state updates to '
Preview stops - WebSocket message to requesting client only - Button resets to idle

Conflict Resolution

Multiple clients editing simultaneously: - Last write wins (no optimistic locking)
- All clients receive final state via broadcast - Race conditions are rare (human
editing speed is slow)

Client out of sync: - Client can request full state re-sync at any time - Happens
automatically on reconnection

8. Use Cases and Examples

This section provides real-world scenarios showing how to use Scene Scheduler
effectively.

8.1 24/7 Automated Channel

Scenario: A community TV channel that runs 24 hours a day with scheduled
programming.

Requirements: - Automated scene switching - Minimal manual intervention -
Overnight programming - Ad breaks between shows

Schedule Design:

json
[
{
"time": "06:00:00",
"scene": "Morning Show",
"duration": "02:00:00",
"sources": [
{
"type": "media source",
"name": "MorningIntro",
"file": "/media/intros/morning.mp4",

"loop": false

b
{
"type": "browser source",
"name": "Clock",
"url": "file:///overlays/clock.html",
"width": 1920,
"height": 1080
}

"time": "08:00:00",
"scene": "News Block",
"duration": "01:00:00",
"sources": [

{
"type": "ffmpeg source",
"name": "NewsFeed",
"input": "rtsp://newscamera.local/live"
}
{
"type": "browser source",
“name": "LowerThird",
"url": "https://graphics.local/news lower third
"width": 1920,
"height": 200
}

"time": "09:00:00",
"scene": "Ad Break",
"duration": "00:03:00",
"sources": [

{

"type": "vlc source",

"name": "Commercials",

"playlist”: "/media/ads/morning ads.xspf"
}

]

"time": "09:03:00",
"scene": "Feature Film",
"duration": "02:00:00",
"sources": [
{
“type": "media source",
"name": "Movie",
"file": "/media/films/morning feature.mp4",

.html",

"loop": false,
"hw_decode": true

}
]
},
{
"time": "23:00:00",
"scene": "Overnight Loop",
"duration”: "07:00:00",
"sources": [
{
"type": "media source",
"name": "NightLoop",
"file": "/media/overnight/holding screen.mp4",
"loop": true
},
{
"type": "browser source",
"name": "Schedule",
"url": "file:///overlays/tomorrow_schedule.html",
"width": 400,
"height": 800
}
]
}

Best practices for this use case: - Test all transitions at least once before going live
- Keep backup content ready (use long-duration loops) - Monitor the system
remotely via Monitor View - Set up alerts for OBS crashes or connection loss

8.2 Conference or Event Automation

Scenario: Multi-day conference with scheduled speakers, breaks, and sponsor
content.

Requirements: - Speaker intro slides - Live camera feeds during talks - Sponsor ads
during breaks - Countdown timers

Example: Single Day Schedule

json
[
{
"time": "08:00:00",
"scene": "Welcome Screen",
"duration": "01:00:00",

"sources": [

{
"type": "media source",
"name": "WelcomelLoop",
"file": "/conference/welcome loop.mp4",
"loop": true
},
{
“type": "browser source",
"name": "Countdown",
"url": "https://timer.local/countdown?target=09:00
"width": 400,
"height": 200
}

"time": "09:00:00",
"scene": "Keynote",
"duration": "01:00:00",
"sources": [

:00",

{
"type": "ffmpeg source",
“name": "MainCamera",
"input": "rtsp://cameral.local/stream"
},
{
"type": "browser source",
"name": "SpeakerInfo",
"url": "https://graphics.local/speaker?id=keynote",
"width": 500,
"height": 150
}

"time": "10:00:00",
"scene": "Break",
"duration": "00:15:00",
"sources": [

{

"type": "vlc source",

"name": "SponsorAds",

"playlist": "/conference/sponsor_ads.xspf"
}

]

"time": "10:15:00",
"scene": "Talk 1",
"duration": "00:30:00",

"sources": [

{
"type": "ffmpeg source",
"name": "SpeakerlCamera",
"input": "rtsp://camera2.local/stream"
}
{
“type": "browser source",
"name": "Slides",
"url": "https://slides.local/talkl",
"width": 1280,
"height": 720
}

Tips: - Use Preview tab to verify all camera feeds before the event - Have backup
scenes ready for technical difficulties - Keep event durations slightly longer than
expected (buffer time) - Run a full rehearsal the day before

8.3 Digital Signage

Scenario: Retail store display showing promotions, product videos, and
announcements.

Requirements: - Looping content throughout business hours - Special promotions
at specific times - Emergency announcement capability

Example Schedule:

json
[
{
"time": "09:00:00",
"scene": "Store Opening",
"duration": "00:05:00",
"sources": [

{
"type": "media source",
"name": "OpeningVideo",
"file": "/signage/store_opening.mp4",
"loop": false
}

"time": "09:05:00",

"scene": "General Promotions",
"duration": "03:55:00",
"sources": [

{
"type": "vlc_source",
"name": "PromoPlaylist",
"playlist": "/signage/general promos.xspf"
},
{
"type": "browser source",
"name": "Clock",
"url": "file:///overlays/store clock.html",
"width": 300,
"height": 100
}
|
b
{
"time": "13:00:00",
"scene": "Lunch Special",
"duration": "01:00:00",
"sources": [
{
“type": "media source",
"name": "LunchPromo",
"file": "/signage/lunch special.mp4",
"loop": true
}
1
},
{
"time": "14:00:00",
"scene": "General Promotions",
"duration": "07:00:00",
"sources": [
{
"type": "vlc_source",
"name": "PromoPlaylist",
"playlist": "/signage/general promos.xspf"
}
]
}
{

"time": "21:00:00",
"scene": "Store Closing",
"duration": "00:05:00",
"sources": [
{
"type": "media source",
"name": "ClosingVideo",

"file": "/signage/store closing.mp4",
"loop": false

}
]
}
{
"time": "21:05:00",
"scene": "Closed",

"duration": "11:55:00",
"sources": [

{
"type": "media source",
"name": "ClosedScreen",
"file": "/signage/closed screen.mp4",
"loop": true
}

Emergency announcements: - Manually trigger scene change in OBS - Or: Edit
schedule to insert urgent event with near-future time - After emergency: Schedule
automatically resumes at next event

8.4 Live Stream Production
Scenario: Weekly live stream with pre-roll, main content, and post-roll.

Requirements: - Automated pre-roll video before going live - Switch to live camera
at exact time - Post-roll video after stream ends

Example:
json
[
{
"time": "19:55:00",
"scene": "Pre-Roll",

"duration": "00:05:00",
"sources": [

{
"type": "media source",
"name": "PreRollVideo",
"file": "/stream/pre_roll.mp4",
"loop": false
}
{

“type": "browser source",

"name": "StartingSoonOverlay",

"url": "https://overlay.local/starting soon?time=20:00",
"width": 1920,

"height": 1080

}
1
}
{
"time": "20:00:00",
"scene": "Live Stream",

"duration": "01:00:00",
"sources": [

{
"type": "ffmpeg source",
"name": "MainCamera",
"input": "rtsp://camera.local/main"
}
{
"type": "ffmpeg source",
"name": "ScreenCapture",
"input": "rtmp://localhost/screen"
}
{
“type": "browser source",
"name": "ChatOverlay",
"url": "https://chat.local/embed",
"width": 400,
"height": 600
}
]
},
{
"time": "21:00:00",
"scene": "Post-Roll",

"duration": "00:03:00",
"sources": [

{
"type": "media source",
"name": "PostRollVideo",
"file": "/stream/post roll.mp4",
"loop": false

},

{
"type": "browser source",
"name": "ThankYouOverlay",
"url": "https://overlay.local/thanks",
"width": 1920,
"height": 1080

}

}

"time": "21:03:00",
"scene": "Offline Screen",
"duration": "22:52:00",
"sources": [

{
"type": "media source",
"name": "OfflinelLoop",
"file": "/stream/offline.mp4",
"loop": true

}

Pro tips: - Start OBS recording 5 minutes before scheduled time - Use Scene
Scheduler for timing, but monitor chat manually - Have backup scenes for technical
difficulties - Test preview of all sources 30 minutes before going live

8.5 Worship Service Automation

Scenario: Automated elements of a church service while allowing manual control
for live elements.

Requirements: - Pre-service announcements and countdown - Automated hymn/
song lyrics - Manual sermon control - Post-service loop

Mixed Automation Approach:

json
[
{
"time": "09:30:00",
"scene": "Pre-Service",
"duration": "00:30:00",
"sources": [

{
"type": "vlc source",
“name": "Announcements",
"playlist": "/worship/announcements.xspf"
}
{
"type": "browser source",
"name": "ServiceCountdown",
"url": "https://timer.local/countdown?target=10:00:00",
"width": 600,

"height": 200

"time": "10:00:00",
"scene": "Welcome",
"duration": "00:05:00",
"sources": [

{
"type": "ffmpeg source",
"name": "MainCamera",
"input": "rtsp://camera.local/front"
}
{
"type": "browser source",
"name": "WelcomeSlide",
"url": "file:///slides/welcome.html",
"width": 1920,
"height": 1080
}
]
}
{
"time": "10:05:00",
"scene": "Worship Songs",

"duration": "00:25:00",
"sources": [

{
"type": "ffmpeg source",
"name": "WideShot",
"input": "rtsp://camera.local/wide"
},
{
"type": "browser source",
"name": "Lyrics",
"url": "https://lyrics.local/service?set=1",
"width": 1920,
"height": 400
}

Manual override: - Operator can manually switch scenes in OBS during sermon -
Schedule resumes after sermon with post-service loop - Scene Scheduler handles
repetitive elements, human handles dynamic parts

9. Best Practices

9.1 Media File Recommendations
Video Encoding

Recommended codec settings: - Codec: H.264 (AVC) - Profile: High - Level: 4.2 or
higher - Bitrate: - 1080p: 8-12 Mbps (CBR for consistent playback) - 720p: 5-8 Mbps
- 4K: 25-40 Mbps (test system performance) - Frame rate: Match OBS output
(typically 30 or 60 fps) - Keyframe interval: 2 seconds (60 frames at 30fps, 120
frames at 60fps)

Audio encoding: - Codec: AAC - Bitrate: 192 kbps (stereo) or 384 kbps (5.1) -
Sample rate: 48 kHz (match OBS) - Channels: Stereo (2.0) for most use cases

Container format: - Preferred: MP4 (.mp4) - Alternative: MKV (.mkv) for
flexibility - Avoid: AVI (dated), MOV (codec issues)

ffmpeg encoding example:

bash

ffmpeg -i input.mov -c:v 1ibx264 -preset medium -crf 20 \
-C:a aac -b:a 192k -ar 48000 \
-movflags +faststart output.mp4

Why these settings? - H.264: Universal compatibility, hardware decoding support -
CBR: Prevents buffer underruns during playback - Keyframes: Allows seeking,
smooth looping - AAC: Standard audio codec, low latency - faststart: Metadata at
beginning (faster loading)

File Organization

Recommended directory structure:

/media/

F— intros/

| — morning_intro.mp4
| |— evening intro.mp4
| L— weekend intro.mp4
— content/

| — showl/

| | F— episode0l.mp4
| | L— episode02.mp4
| L— show2/

L— episode0l.mp4

|

— ads/

| F— commercial 1.mp4
| L— commercial 2.mp4
— overlays/

| F— lower third.html
| L— clock.html

L— backgrounds/

— holding screen.mp4
L— offline loop.mp4

Benefits: - Easy to locate files when configuring events - Clear naming prevents

mistakes - Organized backups

Naming conventions: - Use lowercase with underscores: morning intro.mp4 -
Include date/version if applicable: news 2025 10 28.mp4 - Avoid spaces (use
my file.mp4 not my file.mp4) - Be descriptive: commercial acme 30s.mp4 not
comml.mp4

File Storage

Local vs. Network Storage:

Local storage (recommended): - Fastest access (no network latency) - Most
reliable (no network dependencies) - Best for large files (4K video) - Limited by
disk size

Network storage (NFS/SMB): - Centralized management - Easy to update
content remotely - Network latency affects load times - Single point of failure
(network/server)

Hybrid approach: - Store frequently-used files locally (intros, loops) - Store large
archives on network (past episodes) - Cache network files locally when possible

9.2 Performance Optimization
System Requirements

Minimum specs: - CPU: 4 cores, 2.5 GHz - RAM: 8 GB - Disk: SSD (for fast media
access) - Network: 100 Mbps (for network streams)

Recommended specs: - CPU: 6-8 cores, 3.0+ GHz - RAM: 16 GB - Disk: NVMe SSD -
GPU: Dedicated GPU for hardware encoding/decoding - Network: 1 Gbps

For 4K or multiple network streams: - CPU: 8+ cores or dedicated encoding GPU -
RAM: 32 GB - Disk: RAID for redundancy

OBS Configuration

Reduce CPU usage: - Enable hardware encoding (NVENC, QuickSync, or AMF) -
Lower output resolution if possible (1080p vs. 4K) - Disable unused sources/scenes -
Use hardware decoding for media sources

Optimize sources: - Limit browser source count (high CPU/GPU usage) - Use static
images instead of browser sources when possible - Disable "Shutdown when not
visible" for always-on sources

Scene Scheduler-specific: - Test event transitions with all configured sources -
Monitor CPU/GPU usage during event triggers - Use shorter durations if sources are
lightweight (reduce cleanup overhead)

Browser Source Optimization

HTML/CSS/JS optimization: - Minimize JavaScript (avoid heavy frameworks) - Use
CSS animations (not JavaScript setTimeout loops) - Optimize images (compress, use
SVG when possible) - Lazy-load assets (don't load everything on page load)

Example: Optimized clock overlay

html
<!DOCTYPE html>
<html>
<head>
<style>
body {
background: transparent;
margin: 0;
padding: 20px;
font-family: Arial, sans-serif;
color: white;
font-size: 48px;
text-shadow: 2px 2px 4px black;
}
</style>
</head>
<body>
<div id="clock"></div>
<script>
// Update only once per second (not 60fps)

setInterval(() => {
document.getElementById('clock').textContent =
new Date().tolLocaleTimeString();
}, 1000);
</script>
</body>
</html>

FPS setting: - Static overlays: 1-5 FPS - Animated overlays: 30 FPS - Smooth
animations: 60 FPS (only if needed)

9.3 Reliability and Uptime
For 24/7 Operation

System-level: - Linux: More stable for long-running services, use systemd for auto-
restart - Windows: Use Task Scheduler or NSSM (Non-Sucking Service Manager) for
service installation - Disable automatic updates (manual maintenance windows) -
Monitor system resources (CPU, RAM, disk)

OBS configuration: - Disable auto-updates - Configure auto-reconnect for
streaming - Use scene collections (easy recovery) - Regular profile backups

Scene Scheduler: - Linux: Run as systemd service (auto-restart on crash) -
Windows: Run as Windows Service using NSSM or Task Scheduler - Configure log
rotation (prevent disk fill) - Monitor logs for errors - Alert on OBS disconnection

Linux systemd service example:

ini

[Unit]

Description=Scene Scheduler
After=network.target

[Service]

Type=simple

User=obs
WorkingDirectory=/opt/scenescheduler
ExecStart=/opt/scenescheduler/scenescheduler
Restart=always

RestartSec=10
Environment="0BS WS PASSWORD=yourpassword"

[Install]
WantedBy=multi-user.target

Windows service with NSSM:

cmd
REM Install NSSM from https://nssm.cc/

REM Install Scene Scheduler as service

nssm install SceneScheduler "C:\scenescheduler\scenescheduler.exe"

nssm set SceneScheduler AppDirectory "C:\scenescheduler"

nssm set SceneScheduler AppEnvironmentExtra OBS WS PASSWORD=yourpassword
nssm start SceneScheduler

Backup Strategy

What to backup: 1. schedule. json (critical) 2. config.json 3. OBS scene collections
4. Media files (if not easily replaceable)

Backup frequency: - schedule.json: After every major change - config.json: After
initial setup and changes - Media files: Weekly or after adding new content

Backup methods:

Linux:

bash

Simple backup script

#!/bin/bash

DATE=$(date +%Y%m%d %H%M%S)

BACKUP DIR="/backups/scenescheduler"

Backup configuration and schedule
cp /opt/scenescheduler/config.json "$BACKUP DIR/config $DATE.json"
cp /opt/scenescheduler/schedule.json "$BACKUP DIR/schedule $DATE.json"

Keep only last 30 backups
1s -t $BACKUP DIR/schedule *.json | tail -n +31 | xargs rm -f

Run automatically with cron:

cron
Backup every day at 3 AM
0 3 * * * Jopt/scenescheduler/backup.sh

Windows:

batch

REM backup.bat

@echo off

set TIMESTAMP=%date:~-4%%date:~3,2%%date:~0,2% %time:~0,2%%time:~3,2%%time:~6,2%
set BACKUP DIR=C:\backups\scenescheduler

REM Backup configuration and schedule
copy C:\scenescheduler\config.json "%BACKUP DIR%\config STIMESTAMP%.json"
copy C:\scenescheduler\schedule.json "%BACKUP DIR%\schedule STIMESTAMP%.json"

REM Delete backups older than 30 days
forfiles /p "%BACKUP DIR%" /m schedule *.json /d -30 /c "cmd /c del @path"

Run automatically with Task Scheduler: 1. Open Task Scheduler 2. Create Basic
Task — Daily at 3:00 AM 3. Action: Start a program — C:\scenescheduler\backup.bat

9.4 Testing and Validation

Pre-Production Testing

Schedule validation checklist: 1. All event times are in the future 2. No
overlapping events (or intentional overrides) 3. All scenes exist in OBS 4. All
media file paths are valid 5. All network URLs are reachable 6. Event durations are
appropriate 7. 24-hour coverage (or intentional gaps)

Source validation: 1. Preview each source in Preview tab 2. Verify visual
appearance 3. Check audio levels 4. Test looping behavior (if enabled) 5. Verify
browser sources load completely

System validation: 1. Test full day schedule in fast-forward (set times 1 minute
apart) 2. Verify staging works (sources appear instantly) 3. Check cleanup
(sources removed after duration) 4. Test reconnection (kill OBS, restart, verify
reconnect) 5. Test web interface from remote device

Ongoing Monitoring

Daily checks: - Verify schedule loaded correctly (check web interface) - Confirm OBS
connection status (green indicator) - Review logs for errors

Weekly checks: - Test a few event transitions manually - Verify media files are
accessible - Check disk space (HLS previews, logs)

Monthly checks: - Full schedule review (remove old events) - Update media content
- Test backup restoration - Review system resource usage (CPU, RAM trends)

9.5 Security Best Practices

OBS WebSocket: - Always use a strong password - Use environment variables
(not hardcoded in config) - Don't expose WebSocket port to public internet - Use
firewall rules to restrict access

Web Server: - Bind to localhost if network access not needed - Use reverse proxy
with authentication for remote access - Don't expose without authentication -
Use HTTPS if accessible over untrusted networks

File Permissions:

Linux:

bash

chmod 600 config.json schedule.json
chmod 700 hls/

chown obs:obs /opt/scenescheduler -R

Windows: - Right-click config.json = Properties — Security - Ensure only your user
and SYSTEM have access - Remove "Everyone" or "Users" group if present

Access Control: - Limit SSH access to server - Use SSH keys (not passwords) -
Regularly review user accounts - Monitor access logs

10. Troubleshooting

This section helps diagnose and resolve common issues. Start with the FAQ for quick
answers, then consult specific problem categories.

10.1 Frequently Asked Questions (FAQ)
Q: Scene Scheduler won't start. What should I check?

A: Follow this diagnostic sequence:

1. Check config.json exists and is valid JSON:

bash
jg . config.json

If error: Fix JSON syntax (missing commas, quotes, brackets)

1. Verify OBS is running and WebSocket is enabled: - Open OBS — Tools —
WebSocket Server Settings - Confirm "Enable WebSocket server" is checked -
Note the port (should match config.json)

2. Test WebSocket connection manually:

bash
nc -zv localhost 4455

If connection refused: OBS WebSocket not running

1. Check password matches: - config.json: "password": "yourpassword" - OBS
WebSocket settings: Same password

2. Review logs for specific error:

bash
./scenescheduler

Look for FATAL or ERROR messages in output
Q: Preview button shows "Waiting for stream..." forever (30 second timeout)

A: This indicates HLS playlist generation failed. Common causes:

Cause 1: hls-generator binary missing or not executable

bash
ls -la ./hls-generator
Should show: -rwxr-xr-x (executable)

If not executable:
chmod +x hls-generator

Cause 2: HLS directory doesn't exist or isn't writable

bash
mkdir -p hls
chmod 755 hls

Cause 3: Source file/URL is invalid - Media source: File doesn't exist (ls -la /
path/to/file.mp4) - Browser source: URL unreachable (test in regular browser) -
FFMPEG source: Network stream down (curl -I <urls)

Cause 4: OBS libraries missing (for hls-generator)

bash
1dd ./hls-generator
Check for "not found" lines

Q: Events trigger but sources don't appear in OBS

A: Check these common issues:

1. Staging scene (scheduleSceneAux) doesn't exist: - Open OBS - Verify scene
exists with exact name from config.json - Create if missing (right-click in
Scenes panel = Add)

2. File paths are incorrect: - Check logs for "file not found" errors - Verify paths
are absolute (not relative) - Test file access: cat /path/to/file.mp4 > /dev/
null

3. Network streams are unreachable: - Ping IP addresses: ping 192.168.1.100 -
Test URLS: curl -I rtsp://camera.local/stream- Check firewall rules

4. OBS source creation failed: - Check OBS logs: ~/.config/obs-studio/logs/ -
Look for "failed to create source" messages

Q: Can I access Scene Scheduler from another computer/phone/tablet?

A: Yes! This is a key feature of Scene Scheduler - controlling OBS remotely without
loading the OBS machine.

Setup for network access:

1. Configure config.json for network binding:

json
"webServer": {
"host": "0.0.0.0",
"port": 8080,
"hlsPath": "hls"

2. Find your server's IP address:

Linux:

bash
ip addr show | grep inet

Windows:

cmd
ipconfig

Look for IPv4 address (e.g., 192.168.1.100)

1. Access from any device on your network: - Monitor View: http://
192.168.1.100:8080/ - Editor View: http://192.168.1.100:8080/editor.html

2. If connection fails, check firewall:

Linux:

bash
sudo ufw allow 8080/tcp

Windows: - Open Windows Defender Firewall - Add inbound rule for TCP port 8080

Benefits: Control OBS from your laptop/tablet while OBS runs on a dedicated server,
reducing load and allowing multiple people to monitor simultaneously.

Q: Web interface shows "Disconnected” status

A: The frontend cannot reach the backend. Diagnose:

Check 1: Backend is running

bash
ps aux | grep scenescheduler
Should show process running

Check 2: Web server port is accessible

bash

Test from same machine

curl http://localhost:8080

Should return HTML (not "connection refused")

Test from network (if accessing remotely)
curl http://<server-ip>:8080

Check 3: Host configuration - Check config.json webServer.host setting - For
network access, must be "0.0.0.0" not "localhost"

Check 4: Firewall allows port

bash
sudo ufw status
Check port 8080 is allowed

Check 4: Browser can reach backend - Open browser console (F12 = Console) -
Look for WebSocket errors - Check URL is correct (http://localhost:8080, not https://)

Q: Scenes transition but sources from previous event remain visible

A: This indicates cleanup failure. Possible causes:

1. Event duration is too long: - Sources cleanup happens AFTER duration
expires - Check event duration field - Reduce if needed

2. Manual sources added in OBS: - Scene Scheduler only removes sources IT
created - Manual sources remain - Solution: Remove manually or use dedicated
scenes

3. Cleanup error: - Check logs for "cleanup failed" messages - OBS might be
unresponsive (restart OBS)

Q: Preview works but event staging fails with same source

A: Preview and staging are separate systems. Staging failures may indicate:

1. Timing issue (insufficient staging time): - Large files may not load in 30
seconds - Use smaller files or local copies - Test with Preview tab (if loads in
<30s, staging should work)

2. Race condition (multiple events staging simultaneously): - Check schedule
for events <30 seconds apart - Stagger event times

3. Resource exhaustion: - CPU/GPU maxed out during staging - Monitor
resources: htop during T-30s window - Reduce source count or complexity

Q: How do I reset everything to a clean state?

A: Complete reset procedure:

Linux:

bash
1. Stop Scene Scheduler
pkill scenescheduler

2. Clear schedule
echo "[]" > schedule.json

3. Clear HLS preview files
rm -rf hls/*

4. Restart OBS (clear all dynamic sources)
killall obs
obs &

5. Start Scene Scheduler (auxiliary scene will be recreated automatically)
./scenescheduler

Windows:

cmd
REM 1. Stop Scene Scheduler (Ctrl+C or close window)

REM 2. Clear schedule
echo [] > schedule.json

REM 3. Clear HLS preview files

rmdir /s /q hls
mkdir hls

REM 4. Restart OBS
taskkill /IM obs64.exe /F
start "" "C:\Program Files\obs-studio\bin\64bit\obs64.exe"

REM 5. Start Scene Scheduler (auxiliary scene will be recreated automatically)
scenescheduler.exe

Q: Can I run multiple Scene Scheduler instances?

A: Yes, but each needs: - Different web server port (config.json: "port": 8081) -
Different HLS directory (config.json: "hlsPath": "hls2") - Different schedule file
(config.json: "jsonPath": "schedule2.json") - Different auxiliary scene (config.json:

"scheduleSceneAux": "scheduleSceneAux2")

All instances can connect to the same OBS.
Q: My schedule file is corrupted. How do I recover?

A: Recovery steps:

1. Check for auto-backups (if configured):

bash
1s -la /backups/scenescheduler/schedule *.json
Restore latest
cp /backups/scenescheduler/schedule LATEST.json schedule.json

2. Manually repair JSON:

bash
Validate current file
jgq . schedule.json
Shows error line/column

Edit with text editor
nano schedule.json

3. Start from scratch:

json

[]

Save as schedule. json, then rebuild schedule in web interface
Q: Event triggers at wrong time (timezone issues?)

A: Scene Scheduler uses system local time, not UTC.

Check system timezone:

bash
timedatectl
Shows: Time zone: America/New York (EST, -0500)

If wrong, set correct timezone:

bash
sudo timedatectl set-timezone America/Los Angeles

Verify system time:

bash
date
Should match your local time

Events trigger when system time matches event time field (HH:MM:SS).
Q: How do I upgrade to a new Scene Scheduler version?

A: Safe upgrade procedure:

Linux:

bash

1. Backup current config and schedule
cp config.json config.json.backup

cp schedule.json schedule.json.backup

2. Stop current version
pkill scenescheduler

3. Extract new version
tar -xzf scenescheduler-v0.4-1linux.tar.gz

4. Restore config and schedule
cp config.json.backup config.json

cp schedule.json.backup schedule.json

5. Start new version
./scenescheduler

Windows:

cmd

REM 1. Backup current config and schedule

copy config.json config.json.backup

copy schedule.json schedule.json.backup

REM 2. Stop current version (Ctrl+C or close window)

REM 3. Download and extract new version to same folder
REM (Overwrite scenescheduler.exe and hls-generator.exe)

REM 4. Restore config and schedule (if overwritten)
copy config.json.backup config.json
copy schedule.json.backup schedule.json

REM 5. Start new version
scenescheduler.exe

Check release notes for breaking changes or config schema updates.
10.2 Diagnostic Workflow

When encountering issues, follow this systematic diagnostic process:
Step 1: Identify the Symptom

Categorize your issue: - Application won't start: See Section 10.3 - OBS
connection problems: See Section 10.4 - Preview failures: See Section 10.5 -
Event staging/transition issues: See Section 10.6 - Web interface problems: See
Section 10.7 - Performance issues: See Section 10.8

Step 2: Gather Information

Collect diagnostic data:

1. Scene Scheduler logs:

bash
./scenescheduler 2>&1 | tee scenescheduler.log

2. OBS logs:

Linux:

bash
tail -f ~/.config/obs-studio/logs/$(ls -t ~/.config/obs-studio/logs/ | head -1)

Windows:

Open: %APPDATA%\obs-studio\logs\
View the most recent log file in Notepad

1. System resource usage:

Linux:

bash
htop
Note CPU, RAM, disk usage

Windows:

Open Task Manager (Ctrl+Shift+Esc)
Check Performance tab for CPU, RAM, disk usage

1. Configuration:

bash
cat config.json
cat schedule. json

2. Network connectivity (if using remote OBS or network sources):

bash
ping <obs-host>
curl -I <stream-url>

Step 3: Reproduce the Issue

Create a minimal test case:

1. Simplify schedule: - Remove all events except one - Use simple source (local
video file) - Set time 2 minutes in future

2. Test in isolation: - Does the simplified event work? - If yes: Complexity issue
(too many sources/events) - If no: Fundamental configuration problem

3. Document reproduction steps: - Exact sequence of actions - Expected vs.
actual behavior - Any error messages

Step 4: Apply Fix

After identifying the root cause (Sections 10.3-10.8), apply the fix and verify:

1. Make one change at a time

2. Test after each change

3. Document what fixed the issue

4. Update your configuration/schedule accordingly

10.3 Application Startup Issues

Problem: Scene Scheduler fails to start or exits immediately.
Error: "Failed to parse config.json"
Symptom:

FATAL: Failed to parse config.json: invalid character '}' looking for beginning of objec

Cause: Invalid JSON syntax in config.json.

Solution: 1. Validate JSON:

bash
jq . config.json

1. Common issues: - Missing commas between fields - Trailing commas before
closing braces - Missing quotes around strings - Mismatched brackets/braces

2. Fix syntax and retry

Error: "OBS WebSocket connection failed"
Symptom:
ERROR: Failed to connect to OBS WebSocket: dial tcp [::1]:4455: connect: connection refi

Cause: OBS not running or WebSocket server disabled.

Solution: 1. Start OBS Studio 2. Enable WebSocket: Tools — WebSocket Server
Settings — "Enable WebSocket server" 3. Verify port matches config.json 4. Restart
Scene Scheduler

Error: "Authentication failed"

Symptom:

ERROR: OBS WebSocket authentication failed: invalid password

Cause: Password mismatch between config.json and OBS settings.

Solution: 1. Check OBS password: Tools = WebSocket Server Settings 2. Update
config.json to match:

json
"obsWebSocket": {
"password": "correct-password-here"

}

1. Or use environment variable:

bash
export OBS WS PASSWORD="correct-password"
./scenescheduler

Error: "Schedule file not found"

Symptom:

ERROR: Failed to load schedule: open schedule.json: no such file or directory

Cause: schedule.json doesn't exist at expected location.

Solution: 1. Create empty schedule:

bash
echo "[]" > schedule.json

1. Or specify different path in config.json:

json
"schedule": {
"jsonPath": "/path/to/your/schedule.json"
}

Error: "Port already in use"

Symptom:

FATAL: Failed to start web server: listen tcp :8080: bind: address already in use

Cause: Another process is using port 8080.

Solution: 1. Find process using port:

bash
sudo lsof -i :8080

1. Kill it (if safe):

bash
kill <PID>

2. Or use different port in config.json:

json
"webServer": {
"port": 8081

}

10.4 OBS Connection Issues

Problem: Scene Scheduler starts but can't communicate with OBS.

Disconnects Immediately After Connecting

Symptoms: - "Connected to OBS" followed by "Disconnected” in logs - Web interface
shows red dot (disconnected)

Causes and solutions:

1. OBS WebSocket version mismatch:

bash
Check OBS version
obs --version

Scene Scheduler v1.6 requires 0BS WebSocket 5.x
OBS 28+ includes WebSocket 5.x by default
Older OBS: Install obs-websocket 5.x plugin

2. Network instability (remote OBS):

bash

Test connection stability
ping -c 100 <obs-host>

Look for packet loss

Check network latency
ping <obs-host>
Should be <50ms for local network

3. Firewall blocking reconnection:

bash
Check firewall rules
sudo ufw status

Allow OBS WebSocket port
sudo ufw allow 4455/tcp

Frequent Disconnects/Reconnects

Symptoms: - Logs show repeated disconnect/reconnect cycles - Events trigger
inconsistently

Causes and solutions:

1. OBS crashing or freezing: - Check OBS logs for crashes - Reduce OBS scene
complexity - Update OBS to latest version

2. System resource exhaustion:

bash
Monitor during disconnects
htop

If CPU/RAM maxed out:

- Reduce 0BS source count
- Disable preview in O0BS
- Close other applications

3. Network issues (remote OBS): - Check switch/router logs - Test with direct
ethernet connection - Use wired instead of wireless

Commands Timeout or Fail

Symptoms: - Scene transitions delayed - Sources not created - Logs show "request
timeout" errors

Causes and solutions:

1. OBS overloaded: - Reduce scene complexity - Enable hardware encoding - Close
unused scenes

2. Scene Scheduler making too many requests: - Reduce event frequency -
Simplify source configurations - Increase staging window (code change required)

10.5 Preview System Issues

Problem: Preview fails to start, shows errors, or behaves unexpectedly.
Preview Timeout (30 Seconds)

Symptom: "Waiting for stream..." never resolves, timeout after 30s.

Diagnostic steps:

1. Check hls-generator exists and runs:

bash
Verify exists
1s -la ./hls-generator

Try running manually

./hls-generator --help
Should show usage, not "command not found"

2. Check HLS directory permissions:

bash

Check writable
touch hls/test.txt
rm hls/test.txt

If permission denied:
chmod 755 hls

3. Test source accessibility:

For media sources:

bash
File exists?
ls -la /path/to/file.mp4

File readable?
cat /path/to/file.mp4 > /dev/null

For browser sources:

bash
URL reachable?
curl -I https://example.com/overlay.html

DNS works?
nslookup example.com

For FFMPEG sources:

bash
Stream reachable?
ffprobe rtsp://camera.local/stream

Network route exists?
traceroute camera.local

4. Check disk space:

bash
df -h
Ensure partition with hls/ has free space

Preview Shows Black Screen

Symptom: Preview starts but video is black/blank.
Causes:

1. Browser source with transparent background: - This is normal for browser
sources - Transparency shows as black in preview - In OBS, overlay will work
correctly

2. Video codec unsupported:

bash

Check codec

ffprobe /path/to/file.mp4

Look for codec_name (should be h264)

If not h264, re-encode:
ffmpeg -i input.mp4 -c:v 1ibx264 -c:a aac output.mp4d

3. Network stream not sending video: - Test stream in VLC or other player - Check
camera/encoder settings

Preview Audio But No Video (or vice versa)

Symptom: Can hear audio but no video, or video plays silently.

Causes:

1. Single-track media file: - File may only contain video or audio - Check with
ffprobe:

bash
ffprobe file.mp4
Look for both "Video:" and "Audio:" streams

2. Codec issue: - Video codec unsupported but audio works - Re-encode with
standard codecs (H.264 + AAC)

3. Browser source audio disabled in OBS: - This is OBS-level setting - Preview
uses isolated OBS instance - Audio should work in production

10.6 Event Staging and Transition Issues

Problem: Events trigger but scenes don't switch, or sources don't appear.
Scene Doesn't Switch at Event Time

Symptom: Event time arrives, but OBS stays on current scene.
Diagnostic:

1. Check event time format:

json
// CORRECT:
"time": "14:30:00"

// WRONG:

"time": "2:30 PM"
"time": "14:30"
"time": "14:30:00:000"

2. Check system time:

bash
date
Should show correct local time

3. Check schedule loaded: - Open web interface - Verify event appears in list -
Check "Current time" matches system time

4. Check logs for errors:

bash
Look for event trigger message
grep "event triggered" scenescheduler.log

Scene Switches But Sources Don't Appear

Symptom: OBS switches to correct scene, but sources missing or black.
Common causes:

1. Auxiliary scene configuration issue:
Solution: Check scheduleSceneAux name in config.json (Scene Scheduler creates it automat

2. File paths incorrect:

bash
Check paths in schedule.json
Paths must be absolute:

Linux:
"/home/user/video.mp4"
"~/video.mp4"
"./video.mp4"
"video.mp4"

Windows:
"C:/Videos/video.mp4"
"C:\Videos\video.mp4"
"Videos\video.mp4"
"video.mp4"

3. Sources failed to create during staging:

Check logs for errors during event trigger
Look for "failed to create source" messages

4. Permissions issue:

bash
Verify Scene Scheduler user can read files

sudo -u obs cat /path/to/file.mp4 > /dev/null
Should not show "permission denied"

Sources Appear Late (Not Preloaded)

Symptom: Scene switches but sources load visibly (buffering, black screen for few
seconds).

Causes:

1. Staging didn't complete: - 30-second window insufficient - Use smaller files -
Improve network speed (for streams)

2. File on slow storage: - Network mount with high latency - Copy files locally:

bash
cp /nfs/remote/file.mp4 /local/file.mp4

3. Too many sources loading simultaneously: - Reduce source count per event -
Test with fewer sources to isolate the issue

10.7 Web Interface Issues

Problem: Web interface doesn't load, shows errors, or updates don't appear.
"Cannot GET /" or Connection Refused

Symptom: Browser shows error when accessing Scene Scheduler web interface.
Causes:

1. Backend not running:

bash

ps aux | grep scenescheduler
If nothing: Start backend
./scenescheduler

2. Wrong URL: - Check protocol: http:// not https:// - Check port matches
config.json - Accessing from same machine: Use http://localhost:8080 -
Accessing from network: Use http://<server-ip>:8080 (e.g., http://
192.168.1.100:8080)

3. config.json host setting: - For network access: "host": "0.0.0.0" (binds to all
interfaces) - For local-only: "host": "localhost" (blocks network access) - If you
can't connect from network but need to, change host to 0.0.0.0 and restart

4. Firewall blocking:

bash
Test locally first
curl http://localhost:8080

If works locally but not from network:
sudo ufw allow 8080/tcp

WebSocket "Disconnected"” Status

Symptom: Interface loads but shows red "Disconnected" indicator.
Causes:

1. WebSocket connection blocked: - Check browser console (F12 - Console) - Look
for WebSocket errors - Some corporate networks block WebSockets

2. Backend restarted: - Refresh page (F5) - WebSocket should reconnect
automatically

3. CORS/proxy issue: - If accessing through proxy/reverse proxy - Configure proxy
to allow WebSocket upgrades

Changes Not Appearing in Real-Time

Symptom: Edit event in Editor View, but Monitor View doesn't update.
Causes:

1. WebSocket disconnected: - Check connection indicator - Refresh page
2. Browser cache: - Hard refresh: Ctrl+Shift+R (Linux) - Or clear cache

3. Multiple backend instances: - Each backend has separate state - Ensure all
clients connect to same backend

Preview Button Stuck in "Starting..." State

Symptom: Button shows "Starting preview..." indefinitely.

Causes:

1. WebSocket message lost: - Check connection indicator - Stop preview manually
(reload page)

2. Backend preview process crashed: - Check logs for "preview failed" errors -
Restart backend if necessary

3. Browser JavaScript error: - Check console (F12 - Console) - Reload page
10.8 Performance Issues

Problem: High CPU/RAM usage, lag, or slow response times.
High CPU Usage

Symptom: CPU constantly high (>80%) even with no active events.
Causes:

1. Browser sources running continuously: - Browser sources consume CPU even
when scene hidden - Solution: Enable "Shutdown when not visible" in source
settings

2. Too many scenes in OBS: - Each scene consumes memory - Delete unused
scenes

3. Multiple previews running: - Check for forgotten preview windows - Close
preview modal after testing

4. Inefficient browser source JavaScript: - Excessive animations or polling -
Optimize JavaScript (see Section 9.2)

High Memory Usage

Symptom: RAM usage grows over time, eventually causes crashes.
Causes:

1. Memory leak in browser sources: - Complex SPAs with leaky JavaScript -
Refresh sources periodically (scene switch)

2. Large media files: - 4K videos consume lots of RAM - Use 1080p when possible

3. Orphaned HLS preview files: - Old preview directories not cleaned up - Manual
cleanup:

bash
rm -rf hls/*

Slow Scene Transitions

Symptom: Scene changes happen several seconds late.
Causes:
1. OBS overloaded: - Too many sources rendering - Reduce scene complexity

2. Network latency (remote OBS):

bash
ping <obs-host>
Should be <10ms for local network

3. System resource contention: - Other applications competing for CPU/GPU -
Close unnecessary applications

4. Disk 1/0 bottleneck:

bash
iotop
Check if disk at 100%

e Use SSD instead of HDD
e Reduce concurrent file access

11. Technical Reference
11.1 Schedule JSON Schema

Complete reference for schedule. json structure.

Root Structure

json
[
{
"time": "HH:MM:SS",
"scene": "SceneName",
"duration": "HH:MM:SS",
"name": "Optional Event Name",
"sources": [...]
}
]
Event Object Fields
Field Type Required Description
time string Yes Time to trigger (HH:MM:SS format, 24-hour)
scene string Yes Name of OBS scene to activate
duration string Yes How long to keep sources active (HH:MM:SS)
name string No Human-readable event name (for UI display)
sources array No Array of source objects to add to scene

Source Object: media_source

json
{
“"type": "media source",
"name": "SourceName",
"file": "/absolute/path/to/file.mp4",
"loop": true,
"restart on activate": false,
"hw_decode": true
}
Field Type RequiredDefaultDescription
type string Yes - Must be "media source"
name string Yes - Unique source name in OBS
file string Yes - Absolute path to media file
loop boolean No false Loop video continuously
Restart from beginning on scene
restart on activateboolean No false g &

activate

Field Type RequiredDefaultDescription

hw_decode boolean No false Use hardware decoding (GPU)

Source Object: browser_source

json
{
"type": "browser source",
“name": "SourceName",
"url": "https://example.com/overlay.html",
"width": 1920,
"height": 1080,
"css": "body { background: transparent; }",

"shutdown when hidden": true,
"refresh on activate": false,

"fps": 30

}
Field Type Required Default Description
type string Yes - Must be "browser source"
name string Yes - Unique source name
url string Yes - Full URL (https://, http://, file:///)
width integer Yes - Viewport width (pixels)
height integer Yes - Viewport height (pixels)
css string No " Custom CSS to inject
shutdown when hidden boolean No false Stop rendering when hidden
refresh on activate boolean No false Reload page on scene activate
fps integer No 30 Frame rate (1-60)

Source Object: ffmpeg source

json

{

"type": "ffmpeg source",

“name": "SourceName",

"input": "rtsp://camera.local/stream",
"input format": "",

"buffering mb": 2,
"reconnect delay sec": 5,

"hw decode": false

Field Type

RequiredDefaultDescription

type string
name string
input string
input format string
buffering mb integer

reconnect delay secinteger

hw_decode boolean

Yes
Yes
Yes
No
No

No

No

false

Must be "ffmpeg source"

Unique source name

Stream URL (rtsp://, rtmp://, srt://, etc.)
Container format (auto-detect if empty)
Buffer size in MB (1-10)

Seconds to wait before reconnect
attempt

Use hardware decoding

Source Object: vic_source

json

{
"type": "vlc source",
"name": "SourceName",

"playlist": "/path/to/playlist.xspf",

"loop": true,
"shuffle": false

}
Field Type Required Default Description
type string Yes - Must be "vlc source"
name string Yes - Unique source name
playlist string Yes - Path to playlist file (.xspf, .m3u)
loop boolean No false Loop playlist
shuffle boolean No false Shuffle playback order
Complete Example
json
[
{
"time": "14:30:00",
"scene": "Afternoon Show",
"duration": "01:00:00",
"name": "Daily Afternoon Broadcast",

"sources": [

{

"type": "media source",
"name": "IntroVideo",

"file": "/media/intros/afternoon.mp4",
"loop": false,
"hw_decode": true

},
{
"type": "browser source",
"name": "LowerThird",
"url": "https://graphics.local/lowerthird.html",
"width": 1920,
"height": 200,
"css": "body { background: transparent; }",
"shutdown when hidden": true,
"fps": 30
}
{
“type": "ffmpeg source"”,
"name": "LiveCamera",
"input": "rtsp://camera.local:554/stream",
"buffering mb": 3,
"hw_decode": true
}
]
},
{
"time": "15:30:00",
"scene": "News Segment",
"duration": "00:30:00",
"sources": []
}

11.2 WebSocket Protocol

Scene Scheduler uses WebSocket for real-time communication between backend and
frontend.

Connection

Client initiates connection:

WebSocket URL: ws://localhost:8080/ws
Protocol: Standard WebSocket (RFC 6455)

Handshake:

Client - Server: WebSocket Upgrade request
Server - Client: 101 Switching Protocols
Connection established

Message Format

All messages are JSON:

json

{
"type": "messageType",
"payload": { ... }

}

Client - Server Messages

Get current schedule:

json
{

"type": "getSchedule"
}

Add event:

json
{
"type": "addEvent",
"payload": {
"time": "14:30:00",
"scene": "SceneName",
"duration": "01:00:00",
"sources": [...]

Edit event:

json
{
"type": "editEvent",
"payload": {
"index": 0,

"event": { ... }

Delete event:

json
{
"type": "deleteEvent",
"payload": {
"index": 0O
}

}

Start preview:

json
{
"type": "startPreview",
"payload": {
"source": { ... }
}
}

Stop preview:

json
{
"type": "stopPreview",
"payload": {
"previewID": "preview 123"
}
}

Server - Client Messages

Schedule updated:

json
{
"type": "scheduleUpdated",
"payload": {
"events": [...]

Current event changed:

json
{
"type": "currentEventChanged",
"payload": {
"eventIndex": 0,
"event": { ... }
}

OBS connection status:

json
{
"type": "obsConnectionStatus",
"payload": {
"connected": true
}
}

Scene list updated:

json
{
"type": "scenelListUpdated",
"payload": {
"scenes": ["Scene 1", "Scene 2", ...]
}

}

Preview started:

json
{
"type": "previewStarted",
"payload": {
"previewID": "preview 123",

"hlsURL": "/hls/preview 123/playlist.m3u8"
}
}

Preview stopped:

json
{
"type": "previewStopped",
"payload": {
"reason":
}
}
Error:
json
{
“type": "error",
"payload": {
"message": "Error description"
}
}

11.3 Command-Line Tools

hls-generator

"Preview automatically stopped after 30 seconds"

Standalone tool for generating HLS preview streams.

Usage:

bash

./hls-generator [options]

Options:

Flag

Description

Example

--source-type
--source-name
--source-uri

--output-dir

--width

- -height

--duration

Type of source

Name for source in OBS
URI/path to source

HLS output directory
Video width (px)

Video height (px)

Max duration (seconds)

media, browser, ffmpeg
PreviewSource
/path/file.mp4, https://. ..
/tmp/hls/preview 123

1920

1080

30

Example:

bash

./hls-generator \
--source-type media \
--source-name TestVideo \
--source-uri /media/test.mp4 \
--output-dir /tmp/hls/test \
--width 1920 \
--height 1080 \
--duration 30

Output:

/tmp/hls/test/
F— playlist.m3u8
— segment000.ts

— segment001.ts
; ..

11.4 Configuration Reference

See Section 6 for complete configuration documentation.

Quick reference of all config.json fields:

json
{
"obsWebSocket": {
"host": "localhost", // OBS hostname/IP
"port": 4455, // WebSocket port
"password": "password" // WebSocket password
},
"webServer": {
"host": "0.0.0.0", // Bind address
"port": 8080, // HTTP port
"hlsPath": "hls" // HLS directory (CORRECT field name)
},
"schedule": {
"jsonPath": "schedule.json", // Schedule file path
"scheduleSceneAux": "scheduleSceneAux" // Auxiliary scene name
},
"paths": {
"hlsGenerator": "./hls-generator" // hls-generator binary path
}
"logging": {

"level": "info", // debug, info, warn, error

"format": "text" // text or json
}
}

11.5 Glossary

Auxiliary Scene (scheduleSceneAux) A hidden OBS scene used by Scene Scheduler
for staging sources before they're needed. Sources are preloaded here, then moved to
the target scene during transition.

CEF (Chromium Embedded Framework) The embedded browser engine used by
OBS to render browser sources. Required for browser _source preview functionality.

Connection ID Unique identifier assigned to each WebSocket client connection.
Used to track preview sessions and ensure proper cleanup. Format:
conn_<timestamp> <random>.

Duration The length of time an event's sources remain active before cleanup.
Specified in HH:MM:SS format.

EventBus Internal pub/sub system that synchronizes state across Scene Scheduler
components (scheduler engine, OBS connection, WebSocket clients).

FFMPEG Source OBS source type for network streaming inputs (RTSP, RTMP, SRT,
RTP, HLS, etc.).

HLS (HTTP Live Streaming) Streaming protocol used by preview system. Media is
segmented into small chunks (.ts files) with a playlist manifest (.m3u8).

Hot-Reload Automatic reloading of schedule.json when file changes are detected,
without restarting Scene Scheduler.

Idempotent An operation that can be safely called multiple times without changing
the result beyond the initial call. Scene Scheduler's cleanup operations are
idempotent.

Media Source OBS source type for local video/audio files (MP4, MKV, MOV, etc.).

Preview Real-time test of a source before adding it to an event. Generates 30-second
HLS stream playable in browser.

Preview ID Unique identifier for a preview session. Used in HLS URLs and for
tracking/cleanup.

Scene A collection of sources in OBS. Each event switches to a specific scene.

Staging The 30-second window before an event triggers, during which sources are
preloaded in the auxiliary scene.

Source Any content element in OBS: media files, browser pages, network streams,
images, etc.

VLC Source OBS source type using VLC libraries for media playback. Supports
playlists and exotic codecs.

WebSocket Full-duplex communication protocol used by OBS (for control) and
Scene Scheduler (for frontend sync).

12. Quick Reference Card
Essential Commands

Linux:

bash
Start Scene Scheduler
./scenescheduler

Start with environment variables
0BS WS PASSWORD="secret" ./scenescheduler

Validate config
jq . config.json

Validate schedule
jq . schedule.json

Backup schedule
cp schedule.json schedule.backup.json

Reset schedule
echo "[]" > schedule.json

Check if running
ps aux | grep scenescheduler

Stop
pkill scenescheduler

View logs (if redirected)
tail -f scenescheduler.log

Windows:

cmd
REM Start Scene Scheduler
scenescheduler.exe

REM Start with environment variables
set OBS WS PASSWORD=secret
scenescheduler.exe

REM Validate config (requires jq.exe)
jg . config.json

REM Backup schedule
copy schedule.json schedule.backup.json

REM Reset schedule
echo [] > schedule.json

REM Check if running
tasklist | findstr scenescheduler

REM Stop (Ctrl+C or Task Manager)
taskkill /IM scenescheduler.exe /F

REM View logs (open in Notepad)
notepad scenescheduler.log

Key Files

File Purpose Location
scenescheduler Main executable Application directory
config.json Configuration Same as executable
schedule. json Event schedule Specified in config
hls-generator Preview generator Specified in config
hls/ Preview HLS files Specified in config
Web Interface URLs

Local Access (same machine):

Monitor View: http://localhost:8080/
Editor View: http://localhost:8080/editor.html
WebSocket: ws://localhost:8080/ws

Network Access (from other devices):

Monitor View: http://<server-ip>:8080/
Editor View: http://<server-ip>:8080/editor.html
WebSocket: ws://<server-ip>:8080/ws

Example: http://192.168.1.100:8080/

Finding server IP: - Linux: ip addr show | grep inet - Windows: ipconfig

Note: config.json must have "host": "0.0.0.0" for network access

Event Time Format

Format: HH:MM:SS (24-hour)

Examples:

00:00:00 Midnight
09:30:00 9:30 AM
14:45:30 2:45:30 PM
23:59:59 11:59:59 PM

Common Source Types

json

// Media file (Linux)

{
“"type": "media source",
"name": "Video",
"file": "/home/user/videos/file.mp4",
"loop": false

}

// Media file (Windows)

{
“"type": "media source",
"name": "Video",
"file": "C:/Videos/file.mp4",
"loop": false

// Browser overlay

{
"type": "browser source",
"name": "Overlay",
"url": "https://example.com/page.html",
"width": 1920,
"height": 1080
}
// Network stream
{
"type": "ffmpeg source",
"name": "Camera",
"input": "rtsp://camera.local/stream"
}

Troubleshooting Checklist

Scene Scheduler won't start: - Check config.json syntax: jqg . config.json -
Verify OBS is running - Check OBS WebSocket enabled (Tools - WebSocket Server
Settings) - Verify password matches

Events don't trigger: - Check system time: date - Verify event time format
(HH:MM:SS) - Check schedule loaded (web interface) - Review logs for errors

Sources don't appear: - Verify scheduleSceneAux name is correctly configured in
config.json - Check file paths are absolute - Test file access:cat /path/file.mp4
> /dev/null - Check logs for "failed to create source"

Preview timeout: - Verify hls-generator exists: ls -la ./hls-generator - Make
executable: chmod +x hls-generator - Check HLS directory writable: touch hls/
test; rm hls/test - Test source (file exists, URL reachable)

Web interface disconnected: - Backend running:ps aux | grep scenescheduler -
Port accessible: curl http://localhost:8080 - Check browser console for errors
(F12)

Performance Tips

e Use H.264 video codec (universal compatibility)
e Enable hardware decode/encode

e Store media on SSD (not HDD)

e Limit browser sources (high CPU usage)

e Don't schedule events <30s apart

e Use local files (not network mounts)

e Monitor CPU/RAM during staging window
e Optimize browser source JavaScript

Security Checklist

e Set strong OBS WebSocket password

e Use environment variable for password (not config.json)

e Bind web server to localhost if network access not needed
e Configure firewall (allow only necessary ports)

e Set restrictive file permissions:

bash
chmod 600 config.json schedule.json
chmod 700 hls/

e Regular backups of schedule.json

Keep Scene Scheduler and OBS updated

Getting Help

Documentation: - Full manual: Manual English v0.4.md (this document) -
Technical specifications available in the docs folder

Before reporting bugs: 1. Check FAQ (Section 10.1) 2. Review relevant
troubleshooting section (Section 10) 3. Gather logs and configuration 4. Create
minimal reproduction case 5. Include Scene Scheduler version, OBS version, OS

End of Manual English v0.4.md

Scene Scheduler v0.4 - October 28, 2025

	Scene Scheduler - User Manual
	Table of Contents
	1. Getting Started
	1.1 What is Scene Scheduler?
	1.2 Prerequisites
	1.3 Quick Start Installation
	Linux Installation
	Windows Installation

	1.4 Your First Schedule Event
	1.5 Understanding the Monitor View
	1.6 Understanding the Editor View

	2. Understanding Scene Scheduler
	2.1 Core Concepts
	Events (Scheduled Programs)
	Scenes
	Sources
	The Auxiliary Scene (scheduleSceneAux)

	2.2 Architecture Overview
	2.3 How Scene Transitions Work
	2.4 Schedule Execution Model
	2.5 Real-Time Synchronization

	3. Web Interface Overview
	3.1 Interface Modes
	Monitor View (/)
	Editor View (/editor.html)

	3.2 Navigation
	3.3 Monitor View Layout
	3.4 Editor View Layout
	3.5 Event Configuration Modal

	4. Schedule Management
	4.1 Understanding Your Schedule
	4.2 Creating Your First Event
	4.3 Editing Existing Events
	4.4 Deleting Events
	4.5 Reordering Events
	4.6 Schedule Validation
	4.7 Schedule Persistence
	4.8 Multi-Day Schedules
	4.9 Handling Schedule Conflicts
	4.10 Testing Your Schedule

	5. Configuring Events
	5.1 General Tab
	Time Field
	OBS Scene Field
	Duration Field
	Event Name Field (Optional)

	5.2 Media Tab
	When to Use Media Sources
	Adding a Media Source
	Multiple Media Sources
	Media Source Limitations

	5.3 Browser Tab
	When to Use Browser Sources
	Adding a Browser Source
	Browser Source Performance Tips
	Browser Source Security

	5.4 FFMPEG Tab
	When to Use FFMPEG Sources
	Adding an FFMPEG Source
	FFMPEG Source Troubleshooting
	FFMPEG Source Best Practices

	5.5 Common Source Configuration Patterns
	Pattern 1: News Show
	Pattern 2: Automated Playlist
	Pattern 3: Live Stream Relay
	Pattern 4: Looping Background

	5.6 Preview Tab - Optional Testing Tool
	5.6.1 Why Use Preview?
	5.6.2 How Preview Works
	5.6.3 Using the Preview Tab
	5.6.4 Preview Button States and Messages
	5.6.5 Preview Error Messages
	Error: "Connection timeout"
	Error: "File not found"
	Error: "Invalid URL"
	Error: "Stream failed to start"
	Error: "Browser source load error"
	Error: "Preview already running"
	Error: "Authentication required"

	5.6.6 Preview Timeout (30 seconds)
	5.6.7 Previewing Multiple Sources
	5.6.8 Preview Performance Considerations
	5.6.9 Preview Troubleshooting Checklist
	5.6.10 Preview vs. Production Behavior
	5.6.11 Advanced: Preview of browser_source with CEF

	6. System Configuration
	6.1 Configuration File Location
	6.2 Complete Configuration Template
	6.3 Configuration Sections
	6.3.1 OBS WebSocket Configuration (obsWebSocket)
	6.3.2 Web Server Configuration (webServer)
	6.3.3 Schedule Configuration (schedule)
	6.3.4 Paths Configuration (paths)
	6.3.5 Logging Configuration (logging)

	6.4 Environment Variables
	6.5 Configuration Validation
	6.6 Configuration Examples for Common Scenarios
	Scenario 1: Single Computer Setup
	Scenario 2: Production Server (Network Access)
	Scenario 3: Remote OBS Control
	Scenario 4: Docker Deployment

	6.7 Security Considerations
	6.8 Updating Configuration

	7. How It Works Internally
	7.1 Staging System
	Why Staging Exists
	Staging Process Overview
	Benefits
	Staging Optimization Tips

	7.2 EventBus System (Real-Time Synchronization)
	Event Types
	Event Flow Example: Adding an Event
	Why EventBus Matters

	7.3 OBS WebSocket Communication
	Connection Lifecycle
	Key OBS WebSocket Operations
	Error Handling

	7.4 Schedule Hot-Reload
	How Hot-Reload Works
	What Triggers Reload
	Reload Edge Cases

	7.5 Preview Process Lifecycle
	Preview Request Flow
	Preview Connection Tracking

	7.6 Cleanup and Resource Management
	Event Cleanup (After Duration Expires)
	Preview Cleanup
	WebSocket Client Cleanup
	Application Shutdown Cleanup

	7.7 State Synchronization
	Initial State Synchronization (Client Connect)
	Ongoing State Sync
	Conflict Resolution

	8. Use Cases and Examples
	8.1 24/7 Automated Channel
	8.2 Conference or Event Automation
	8.3 Digital Signage
	8.4 Live Stream Production
	8.5 Worship Service Automation

	9. Best Practices
	9.1 Media File Recommendations
	Video Encoding
	File Organization
	File Storage

	9.2 Performance Optimization
	System Requirements
	OBS Configuration
	Browser Source Optimization

	9.3 Reliability and Uptime
	For 24/7 Operation
	Backup Strategy

	9.4 Testing and Validation
	Pre-Production Testing
	Ongoing Monitoring

	9.5 Security Best Practices

	10. Troubleshooting
	10.1 Frequently Asked Questions (FAQ)
	Q: Scene Scheduler won't start. What should I check?
	Q: Preview button shows "Waiting for stream..." forever (30 second timeout)
	Q: Events trigger but sources don't appear in OBS
	Q: Can I access Scene Scheduler from another computer/phone/tablet?
	Q: Web interface shows "Disconnected" status
	Q: Scenes transition but sources from previous event remain visible
	Q: Preview works but event staging fails with same source
	Q: How do I reset everything to a clean state?
	Q: Can I run multiple Scene Scheduler instances?
	Q: My schedule file is corrupted. How do I recover?
	Q: Event triggers at wrong time (timezone issues?)
	Q: How do I upgrade to a new Scene Scheduler version?

	10.2 Diagnostic Workflow
	Step 1: Identify the Symptom
	Step 2: Gather Information
	Step 3: Reproduce the Issue
	Step 4: Apply Fix

	10.3 Application Startup Issues
	Error: "Failed to parse config.json"
	Error: "OBS WebSocket connection failed"
	Error: "Authentication failed"
	Error: "Schedule file not found"
	Error: "Port already in use"

	10.4 OBS Connection Issues
	Disconnects Immediately After Connecting
	Frequent Disconnects/Reconnects
	Commands Timeout or Fail

	10.5 Preview System Issues
	Preview Timeout (30 Seconds)
	Preview Shows Black Screen
	Preview Audio But No Video (or vice versa)

	10.6 Event Staging and Transition Issues
	Scene Doesn't Switch at Event Time
	Scene Switches But Sources Don't Appear
	Sources Appear Late (Not Preloaded)

	10.7 Web Interface Issues
	"Cannot GET /" or Connection Refused
	WebSocket "Disconnected" Status
	Changes Not Appearing in Real-Time
	Preview Button Stuck in "Starting..." State

	10.8 Performance Issues
	High CPU Usage
	High Memory Usage
	Slow Scene Transitions

	11. Technical Reference
	11.1 Schedule JSON Schema
	Root Structure
	Event Object Fields
	Source Object: media_source
	Source Object: browser_source
	Source Object: ffmpeg_source
	Source Object: vlc_source
	Complete Example

	11.2 WebSocket Protocol
	Connection
	Message Format
	Client → Server Messages
	Server → Client Messages

	11.3 Command-Line Tools
	hls-generator

	11.4 Configuration Reference
	11.5 Glossary

	12. Quick Reference Card
	Essential Commands
	Key Files
	Web Interface URLs
	Event Time Format
	Common Source Types
	Troubleshooting Checklist
	Performance Tips
	Security Checklist
	Getting Help

